Check the picture below to the left, let's use those sides with the law of sines
![\textit{Law of sines} \\\\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{sin(14^o)}{97}=\cfrac{sin(84^o)}{XZ}\implies XZ = \cfrac{97\cdot sin(84^o)}{sin(14^o)}\implies XZ \approx 398.76 \\\\\\ \stackrel{\textit{now using SOH CAH TOA}}{cos(82^o) = \cfrac{XW}{XZ}}\implies XZcos(82^o)=XW \\\\\\ 398.76cos(82^o)\approx XW\implies 55.497\approx XW\implies \stackrel{\textit{rounded up}}{55=XW}](https://tex.z-dn.net/?f=%5Ctextit%7BLaw%20of%20sines%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Cmeasuredangle%20A%29%7D%7Ba%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20B%29%7D%7Bb%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20C%29%7D%7Bc%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bsin%2814%5Eo%29%7D%7B97%7D%3D%5Ccfrac%7Bsin%2884%5Eo%29%7D%7BXZ%7D%5Cimplies%20XZ%20%3D%20%5Ccfrac%7B97%5Ccdot%20sin%2884%5Eo%29%7D%7Bsin%2814%5Eo%29%7D%5Cimplies%20XZ%20%5Capprox%20398.76%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bnow%20using%20SOH%20CAH%20TOA%7D%7D%7Bcos%2882%5Eo%29%20%3D%20%5Ccfrac%7BXW%7D%7BXZ%7D%7D%5Cimplies%20XZcos%2882%5Eo%29%3DXW%20%5C%5C%5C%5C%5C%5C%20398.76cos%2882%5Eo%29%5Capprox%20XW%5Cimplies%2055.497%5Capprox%20XW%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B55%3DXW%7D)
Answer:
$6000
Step-by-step explanation:
so basically, 25% of the 100% value is gone, right? which means that 75% of the value would remain. After that, all is easy. 8000*0.75, since 75% is 0.75, and the answer of that is 6000, so the current value is 6000 dollars.
Answer: 7.5 items
Step-by-step explanation:
Both Karen and James had 30 stocking items.
Karen bought 35% of her items;
= 35% * 30
= 10.5 items
James has bought 60%;
= 60% * 30
= 18 items
= 18 - 10.5
= 7.5 items

<h2>
Explanation:</h2>
For a better understanding of the problem I've built up two triangles from the given triangular shape. So these two triangles are similar. Therefore, we can solve this problem by using ratios and corresponding sides in this way:

But our goal is to find y. Let's call w the height of the small triangle, then:

Applying the concept of ratios again:

<h2>Learn more:</h2>
Right triangle: brainly.com/question/10684799
#LearnWithBrainly