1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
4 years ago
13

The population of a local species of dragonfly can be found using an infinite geometric series where a1 = 42 and the common rati

o is 3/4. Write the sum in sigma notation and calculate the sum that will be the upper limit of this population.

Mathematics
1 answer:
Mashutka [201]4 years ago
3 0

we are given

first term is

a_1=42

common ratio is

r=\frac{3}{4}

now, we can find nth term

a_i=a_1(r)^{i-1}

now, we can plug values

a_i=42(\frac{3}{4})^{i-1}

now, we can write in sigma form

sum=\sum _{i=1}^{\infty }\:42(\frac{3}{4})^{i-1}

now, we can find sum

we can use formula

sum=\frac{a}{1-r}

now, we can plug values

we get

sum=\frac{42}{1-\frac{3}{4}}

sum=168

so, option-D.................Answer

You might be interested in
Can a mathematician assist?<br><br> explain how 1.2e4/6e-2 = 2^5 in-depth
Sonbull [250]
\dfrac{1.2\times10^4}{6\times10^{-2}}=\left(\dfrac65\times10^4\right)\left(\dfrac16\times10^2\right)=\dfrac15\times10^6=0.2\times10^6=2\times10^5
4 0
4 years ago
A study showed that there are 16 vehicles for every 10 households. How many vehicles are there for 107 million households?
Komok [63]
16v........10h \\x......107.000.000h \\\\ x=\frac{16*107.000.000}{10} \\\\ x=16*10.700.000 \\\\ \boxed{x=171.200.000 \ vehicles}
5 0
3 years ago
Read 2 more answers
The price to ship a box varies directly as the weight of the box in pounds. A box that weighs 10 pounds costs $10.90 to ship.
nydimaria [60]
Well we can say 10.90/10 = the cost per pound to ship the item
we can infer this from the above text so
10.90/10 = 1.09.
So 1.09 * 37 = 40.33
$40.33
or 40 dollars and 33 cents to ship the second box with a weight of 37lb (pounds).
7 0
4 years ago
How many solutions does this linear system have y=2x-5. -8-4y=20​
ollegr [7]

Answer:

One solution

Step-by-step explanation:

y = 2x – 5. –8x – 4y = –20. one solution: (–2.5, 0)

4 0
4 years ago
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
Other questions:
  • Which statement is true?
    8·1 answer
  • Please assist me with the domain and range of graphs​
    14·1 answer
  • The difference of two numbers is 3. Their sum is 13. Find the numbers
    10·1 answer
  • Which equation can be used to represent "six added to twice the sum of a number and four is equal to one-half of the difference
    12·1 answer
  • I need to know the answer to this if u could answer please thank you. -7/12 minus -7/36
    8·1 answer
  • (3x+2x^4)+(3x-5x^4)​
    10·1 answer
  • 1/2 + 2/5 pls help me I’m struggling
    5·1 answer
  • SOMOEN DELETED ALL MY ASNWERS NOW I ONLY HAVE 13 POINTS WHY WHY WHYYYYYYYYY
    9·1 answer
  • Emily walked around 2 parks. One measures 54 feet by 38 feet and other measure 32 feet by 22 feet. How much did she walk?
    10·1 answer
  • How many solutions for x does the following equation have?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!