Answer:
A=50
Step-by-step explanation:
assuming you mean 100-A+20-70=0
you need to solve for A, which means add all your numbers together and isolate A.
-A+50=0
A=50
Answer:
Do you want to be extremely boring?
Since the value is 2 at both 0 and 1, why not make it so the value is 2 everywhere else?
is a valid solution.
Want something more fun? Why not a parabola?
.
At this point you have three parameters to play with, and from the fact that
we can already fix one of them, in particular
. At this point I would recommend picking an easy value for one of the two, let's say
(or even
, it will just flip everything upside down) and find out b accordingly:
Our function becomes
Notice that it works even by switching sign in the first two terms: 
Want something even more creative? Try playing with a cosine tweaking it's amplitude and frequency so that it's period goes to 1 and it's amplitude gets to 2: 
Since cosine is bound between -1 and 1, in order to reach the maximum at 2 we need
, and at that point the first condition is guaranteed; using the second to find k we get 

Or how about a sine wave that oscillates around 2? with a similar reasoning you get

Sky is the limit.

Setting

, you have

. Then the integral becomes




Now,

in general. But since we want our substitution

to be invertible, we are tacitly assuming that we're working over a restricted domain. In particular, this means

, which implies that

, or equivalently that

. Over this domain,

, so

.
Long story short, this allows us to go from

to


Computing the remaining integral isn't difficult. Expand the numerator with the Pythagorean identity to get

Then integrate term-by-term to get


Now undo the substitution to get the antiderivative back in terms of

.

and using basic trigonometric properties (e.g. Pythagorean theorem) this reduces to
Answer:
41/5
Step-by-step explanation:
So the answer is that 8 1/5 as a decimal is 8.2.
We convert it to an improper fraction which, in this case, is 41/5 and then we divide the new numerator (41) by the denominator to get our answer.