Answer:
Tetraploid wheat evolved by allopolyploidization and subsequent diploid-like behavior due to cytological diploidization
Explanation:
Durum wheat (<em>Triticum durum</em>) or pasta wheat, is a tetraploid wheat species that has 28 chromosomes, i.e., seven pairs in each genome (2n = 4x = 28). Durum wheat was domesticated from wild emmer wheat, which originated by hybridization of two diploid wheat species with 14 chromosomes: <em>Triticum monococcum</em> (genome AA) and one wild progenitor (genome BB). <em>Triticum durum </em>is a typical example of evolution by hybridization and polyploidization, where the resultant tetraploid species has two complete sets of chromosomes. Allopolyploidization is one of the most common types of plant speciation. During meiosis, 28 chromosomes form 14 homologous chromosome pairs, because homologous chromosomes have developed 'restriction of pairing' (i.e., cytological diploidization). The restriction of pairing to fully homologous chromosomes ensures a correct meiotic behavior, which otherwise would be altered due to the high level of homology that still exists among chromosomes from different wheat progenitors.
From tiny blood cells/vessels!
Hope this helps!
Answer:
The correct answer is "a hypertonic solution".
Explanation:
Seawater is the most clear example of a hypertonic solution in nature. The concentration of ions in seawater are far more superior than the concentration of ions inside a plant or an animal cell, since seawater have an osmolarity of about 1000 mOsm/l. Therefore, at high tide a plant or animal cell will be in a hypertonic solution, and the cells must have adaptions to avoid cell shrinking and dead.