1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
15

4. Find the value of x in the equation 9 − 4x = 57. A. 16.5 B. −16.5 C. −12 D. 12

Mathematics
1 answer:
guajiro [1.7K]3 years ago
5 0

Answer:

C. −12

Step-by-step explanation:

9 − 4x = 57

Subtract 9 from each side

9-9-4x= 57-9

-4x = 48

Divide by -4 on each side

-4x/-4 = 48/-4

x = -12

You might be interested in
Some help me please help me please help me please
kodGreya [7K]
1_ 210+90= 300



2_ it's prime:


[1,19]




good luck


4 0
3 years ago
20
tangare [24]

Answer:

55

Step-by-step explanation:

If you multiply by 5 to get it over 100, or the percent, you get 55/100 which can just be written as 0.55 or 55%.

7 0
2 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
Cathy rolls a number cube that is labeled from 1 to 6.
MatroZZZ [7]

Answer: 2/3

Cathy rolls a number cube that is labeled from 1 to 6.

Total outcomes = {1,2,3,4,5,6}

she rolls an even number or a multiple of 3

Outcomes of an even number = {2,4,6}

Outcomes of multiple of 3 = {3,6}

so favorable outcomes of even number or a multiple of 3 = {2,3,4,6}

Probability ( any event) =number of favorable outcomes divide by total  number of outcomes

probability(even number or a multiple of 3) = \frac{4}{6}=\frac{2}{3}

7 0
3 years ago
Please solve for me
polet [3.4K]

Answer:

3₹

Step-by-step explanation:

To print cost is 3₹a manager if company print

4 0
3 years ago
Other questions:
  • Daniel is looking over some data regarding the temperatures of countries and how the temperature relates to the number of mosqui
    15·1 answer
  • What will the temperature be in degrees Fahrenheit when it is 80° Celsius outside? (Recall the formula F = (9C 4072-01-01-03-00_
    10·2 answers
  • After tossing the same coin 10 times, you are surprised to find that tails has come up 7 times. you therefore conclude that this
    6·1 answer
  • the product of two numbers is 450. The first number is half of the second number. Which equation can be used to find x, the grea
    5·1 answer
  • What is the basis of statistical inference
    13·1 answer
  • What are all the subsets of the set? {–3, 6}
    7·1 answer
  • Select the correct answer.<br> Solve the following equation by completing the square.
    12·1 answer
  • A stack of 500 pieces of paper is 1.015 inches tall. What is an appropriate estimate for the thickness of each piece of paper?
    8·1 answer
  • There are 6 people who want to share 17 ride tickets for the carnival. Each person will get an equal number of tickets. How many
    6·2 answers
  • FIRST ANSWER WILL GET BRAINLIEST In parallelogram EFGH, m∠1 = 3x – 5, m∠2 = x + 10, and m∠3 = 2x + 15.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!