Answer:
1) 
2) 
3) 
And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
4) 
And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:

And replacing we got:

Part 2

Part 3
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
Part 4
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Let
x--------> number of dogs that completed the obedience class
we know that
total number of dogs=5
<span>Eighty percent of the dogs have completed obedience classes
so
x=0.80*5------> x=4
the answer is
4 dogs </span>have completed obedience classes
Answer:

Step-by-step explanation:
In probability, "AND" means "multiplication" and
"OR" means "addition".
We want the probability that she picks FAVORITE SHIRT "AND" FAVORITE PANT.
Probability that she picks favorite shirt = 3/5
Probability that she picks favorite pants = 2/4 = 1/2
Since, "AND", we "multiply" both to get:
3/5 * 1/2 = 3/10
Answer: 40% chance
Sample space: 3 white 2 red, 5 pairs
2/5 probability, as a percent would be 40% chance
Answer:
1/12,000
Step-by-step explanation:
Data provided in the question:
Size of a population of mustard plants = 6,000
Now,
According to genetic drift theory
The probability that a newly-arisen mutation will become fixed is given using the formula
⇒ 1 ÷ [ 2 × Size of a population of mustard plants ]
⇒ 1 ÷ [ 2 ×6,000 ]
⇒ [ 1 ÷ 12,000 ]
Hence,
probability that a newly-arisen mutation will become fixed in this population is 1/12,000