Answer:
is sometimes positive and sometimes negative.
Step-by-step explanation:

Take 

Take 

Hence
for
and
for 
So
is sometimes positive and sometimes negative in the interval.
We'll use the following properties of sine and cosine to prove this:



Then it's just a matter of filling it in...
sin20sin40 * sin60sin80 = 1/2(cos20 - cos60) * 1/2 (cos20 - cos140) =
1/8( cos40 + 1 - cos160 - cos120 - cos40 - cos80 + cos80 + cos200) =
1/8(1 - cos160 - cos120 + cos200) =
1/8(1 - cos160 - cos120 + cos160) =
1/8(1 - cos120 ) = 1/8( 1 + 1/2 ) = 3/16