Glucose is the main provider of energy for the brain and the nervous system. Because the brain is so rich in nerve cells, or neurons, it is the most energy demanding organ, using one half of all the sugar energy in the body. Brain functions such as memory, thinking and learning are closely linked to glucose levels and how efficiently the brain uses this fuel source.
Answer:
Three ways a scientist can reduce bias include: 1) Sampling a larger pool (assuming the subjects are human) in order to broaden recorded data. 2) Making sure to sample more than one group. This means to not just sample one's friends, etc.
Answer:
Each strand of a DNA molecule is composed of a long chain of monomer nucleotides. The nucleotides of DNA consist of a deoxyribose sugar molecule to which is attached a phosphate group and one of four nitrogenous bases: two purines (adenine and guanine) and two pyrimidines (cytosine and thymine
Explanation:
Attached is a table. I found the exercise on another page on the internet and the sample of 100 individuals was categorised on a table - easier to understand than as it is presented here.
<span>"(a) what is the probability that a random sampled individual, gene 1 is dominant" - We should first add up all of the individuals that are dominant for gene 1 (56+24) and then divide it by the total number of individuals (100).
</span>

=0.8
<span>The probability is of 8 in 10 individuals.
"</span><span>(b) what is the probability that a random sampled individual, gene 2 is dominant" - Follow the same logic as in the previous question.
</span>

=0.7
<span>The probability is of 7 in 10 individuals.
</span>"<span>(c) given that gene 1 is dominant, what is the probability that gene 2 is dominant" - Because we are considering those that are dominant for gene 1, our total number of individuals is the total individuals that are dominant for gene 1 and not the whole 100. Once we have this restriction, and we want to know the probability that gene 2 is dominant in these individuals, we should also only consider those that are dominant for gene 2.
</span>

=0.7
The probability that gene 2 is dominant, given that that gene 1 is dominant, is of 7 in 10 individuals.