Answer:
![\displaystyle d = 4\sqrt{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%204%5Csqrt%7B5%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:
![\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
Point (-5, 6) → x₁ = -5, y₁ = 6
Point (3, 2) → x₂ = 3, y₂ = 2
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formulas]:
![\displaystyle d = \sqrt{(3+5)^2+(2-6)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%283%2B5%29%5E2%2B%282-6%29%5E2%7D)
- [Distance] [√Radical] (Parenthesis) Add/Subtract:
![\displaystyle d = \sqrt{(8)^2+(-4)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B%288%29%5E2%2B%28-4%29%5E2%7D)
- [Distance] [√Radical] Evaluate exponents:
![\displaystyle d = \sqrt{64+16}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B64%2B16%7D)
- [Distance] [√Radical] Add:
![\displaystyle d = \sqrt{80}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%20%5Csqrt%7B80%7D)
- [Distance] [√Radical] Simplify:
![\displaystyle d = 4\sqrt{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20d%20%3D%204%5Csqrt%7B5%7D)
Answer:
10000 if I'm right...maybe
Answer:
y is undefined
Step-by-step explanation:
if you have a vertical line, it will always be undefined
Answer:
Last week the coral reef grew .0196m
Step-by-step explanation:
So it's hard to explain but simply Milli witch is the symbol "m" is a unit prefix in the metric system denoting a factor of one thousandth (10 −3). So 19.6mm is 19.6*10^-3m. in other words 19.6 times 10^-3m
hope this helps sorry it's so complicated :/
Answer:
I think is is 5.4
Step-by-step explanation:
what I did is divided the problem