Answer with explanation:
1. The given equations are
3x -5 y=2
-x+2 y= 0
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-5%5C%5C-1%262%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%2C%5C%5C%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D)

Adj.A=Transpose of cofactor of Matrix A
![Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] \times \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2](https://tex.z-dn.net/?f=Adj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C5%263%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20%7CA%7C%3D6-5%5C%5C%5C%5C%7CA%7C%3D1%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D4%2C%20y%3D2)
2.
The given equations are
x+y-z=2
x+z=7
2 x +y+z=13
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^{-1}B\\\\\rightarrow X=\frac{Adj.A}{|A|}\times B\\\\a_{11}=-1,a_{12}=1,a_{13}=1,a_{21}=-2,a_{22}=3,a_{23}=1,a_{31}=1,a_{32}=-2,a_{33}=-1\\\\|A|=1\times(0-1)-1\times(1-2)-1\times(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%26-1%5C%5C1%260%261%5C%5C2%261%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Crightarrow%20X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Crightarrow%20X%3D%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%5Ctimes%20B%5C%5C%5C%5Ca_%7B11%7D%3D-1%2Ca_%7B12%7D%3D1%2Ca_%7B13%7D%3D1%2Ca_%7B21%7D%3D-2%2Ca_%7B22%7D%3D3%2Ca_%7B23%7D%3D1%2Ca_%7B31%7D%3D1%2Ca_%7B32%7D%3D-2%2Ca_%7B33%7D%3D-1%5C%5C%5C%5C%7CA%7C%3D1%5Ctimes%280-1%29-1%5Ctimes%281-2%29-1%5Ctimes%281-0%29%5C%5C%5C%5C%3D-1%2B1-1%5C%5C%5C%5C%7CA%7C%3D-1%5C%5C%5C%5CAdj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-2%261%5C%5C1%263%26-2%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
![\frac{Adj.A}{|A|}=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\times\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4](https://tex.z-dn.net/?f=%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CX%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D3%2Cy%3D3%2Cz%3D4)
Answer:
-decreases the chance of contracting any type of virus
-decreases the chance of other people contracting the virus
Step-by-step explanation:
Answer:
Since k is constant (the same for every point), we can find k when given any point by dividing the y-coordinate by the x-coordinate.
so i assume it could be 162 sorry if i am wrong let me know if it is right or not
if four points are collinear, that are also coplanar: This is true
If points lie in the same line. they must lie in the same plane
It's a coffin because the person who makes it is alive so they don't need to use it, the person who buys it is also alive and buying it for someone else.
The person who is using it has passed away so they can't see or feel anything.
:( This is one morbid riddle.