Answer:
Group B is farther from the airport.
Step-by-step explanation:
To find the distance of each group to the airport we can use the law of cosines in the triangle created with the two movements done and the resulting total distance.
Law of cosines:

For group A, we have the sides of 200 miles and 75 miles, and the angle between the sides is (180-68) = 112°, so the third side of the triangle is:



For group B, we also have the sides of 200 miles and 75 miles, and the angle between the sides is (180-51) = 129°, so the third side of the triangle is:



The distance from group B to the airport is bigger, so group B is farther from the airport.
Jake spent a total of 70 cents.
b = black-and-white = 8 cents
c = color = 15 cents
70 = 8b + 15c
he made a total of 7 copies
b + c = 7
system of equation:
70 = 8b + 15c
b + c = 7
--------------------------
b + c = 7
b + c (-c) = 7 (-c)
b = 7 - c
plug in 7 - c for b
70 = 8(7 - c) + 15c
Distribute the 8 to both 7 and - c (distributive property)
70 = 56 - 8c + 15c
Simplify like terms
70 = 56 - 8c + 15c
70 = 56 + 7c
Isolate the c, do the opposite of PEMDAS: Subtract 56 from both sides
70 (-56) = 56 (-56) + 7c
14 = 7c
divide 7 from both sides to isolate the c
14 = 7c
14/7 = 7c/7
c = 14/7
c = 2
c = 2
---------------
Now that you know what c equals (c = 2), plug in 2 for c in one of the equations.
b + c = 7
c = 2
<em>b + (2) = 7
</em><em />Find b by isolating it. subtract 2 from both sides
b + 2 = 7
b + 2 (-2) = 7 (-2)
b = 7 - 2
b = 5
Jake made 5 black-and-white copies, and 2 color copies
hope this helps
Answer:
can u insert a picture plzz
Explanation:
Addition of fractions can be accomplished using the formula ...
a/b + c/d = (ad +bc)/(bd)
Usually, you are asked to find the common denominator and rewrite the fractions using that denominator. It is not necessary, but it can save a step in the reduction of the final result. Here, we'll use the formula, then reduce the result to lowest terms.
___
13. 5/6 +9/11 = (5·11 +6·9)/(6·11) = 109/66 = 1 43/66
___
14. 7/20 -5/8 = (7·8 -20·5)/(20·8) = -44/160 = -11/40
___
15. 1/5 -1/12 = (1·12 -5·1)/(5·12) = 7/60
___
Dividing fractions can be accomplished different ways. I was taught to multiply by the inverse of the divisor. ("Invert and multiply.") Here, that means the problem (2/7) / (1/13) can be rewritten as ...
(2/7) × (13/1) . . . . . where 13/1 is the inverse of 1/13.
You can also express the fractions over a common denominator. In that case, the quotient is the ratio of the numerators. Perhaps a little less obvious is that you can express the fractions using a common numerator. Then the quotient is the inverse of the ratio of the denominators: (2/7) / (2/26) = 26/7. (You can see how this works if you "invert and multiply" the fractions with common numerators. Those numerators cancel.)
__
16. (2/7)/(1/13) = 2/7·13/1 = 26/7 = 3 5/7