let's convert firstly the mixed fractions to improper fractions and then add up.
![\bf \stackrel{mixed}{2\frac{3}{8}}\implies \cfrac{2\cdot 8+3}{8}\implies \stackrel{improper}{\cfrac{19}{8}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\\\ \stackrel{mixed}{2\frac{7}{8}}\implies \cfrac{2\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{23}{8}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B3%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B3%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B8%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B23%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
140
Step-by-step explanation:
180 - 120 = 60 (angle3)
180-100 = 80 (angle 2)
180 - (60 + 80 ) = 40 (angle 1)
180- 40 = 140
Answer:
B: 0.25 = 1/4
Step-by-step explanation:
Queremos encontrar otra representación del número 0.25
Notar que hay dos decimales luego de la coma, por lo que podemos multiplicar este número y dividir por 100.
0.25 = 0.25*1 = 0.25*(100/100) = (0.25*100)/(100) = 25/100
Ahora tenemos el número escrito como una fracción, la cual debemos simplificar.
25/100
Podemos ver que tanto el numerador como el denominador son multiplos de 5, por lo que podemos dividir ambos por 5:
25/100 = (25/5)/(100/5) = 5/20
Nuevamente, ambos son multiplos de 5, por lo que podemos dividir ambos por 5.
5/20 = (5/5)/(20/5) = 1/4
así tenemos:
0.25 = 25/100 = 5/20 = 1/4
0.25 = 1/4
La opción correcta es B.
Answer:
ab² - 9
Step-by-step explanation:
Given in the question an expression
(ab + 3)(ab - 3)
To product mentally we will use polynomial identity called
Difference of squares
<h3>a² - b² = (a+b)(a-b) </h3>
here a = ab
b = 3
(ab + 3)(ab - 3) = ab² - 3² = ab² - 9