Answer: Identify which of the following functions are eigenfunctions of the operator d/dx: (a) eikx, (b) cos kx, (c) k, (d) kx, (e) e−ax2
Step-by-step explanation: First, we going to apply the operator derivate to each item. Remember that a function f is an eigenfunction of D if it satisfies the equation
Df=λf, where λ is a scalar.
a) D(eikx)/dx= ik*eikx, then the function is a eigenfunction and the eingenvalue is ik.
b) D(cos kx)/dx= -ksen kx, then the funcion is not a eigenfunction.
c) D(k)/dx=0, then the funcion is not a eigenfunction.
d) D(kx)/dx=k, then the funcion is not a eigenfunction.
e) D(e-ax2)/dx= -2ax*e-ax2, then the function is a eigenfunction and the eingenvalue is -2ax
Let maria drive for x hours, then
<span>51x + 53(5-x) = 258 </span>
<span>265 - 2x = 258 </span>
<span>2x = 7 </span>
<span>x = 3.5 hours </span>
<span>-------------------</span>
Answer:
40
Step-by-step explanation:
n/10+5=9
n/10=9-5
n/10=4
n=4*10
n=40
Answer:
Freshman: 3.245
Sophomore: 3.0775
All: 3.16125
Step-by-step explanation:
Freshman: (B+) + (B+) + (A-) + (B-) /(4lessons)
(3.33 + 3.33 + 3.66 + 2.66)/4=12.98/4=3.245
Sophomore: (B-) + (C+) + (A-) +(A-) /4
(2.66 + 2.33 + 3.66 + 3.66)/4 = 12.31/4= 3.0775
All: (3.245 + 3.0775)/2=6.3225/2=3.16125