Answer:
B:
Step-by-step explanation:
Answer:
(i) The name of the part of the circle, OQ is a radius
(ii) The radius of the sector QOR is 21 cm
Step-by-step explanation:
The given figure is a sector of the circle O
∵ Any sector of a circle formed from 2 radii and an arc
∴ OQ is a radius
(i) The name of the part of the circle, OQ is a radius
The rule of the length of an arc of a circle is L =
× 2 π r, where
- α is the angle of the sector
- r is the radius of the circle
∵ The length of the arc QR is 22 cm
∴ L = 22
∵ The measure of the angle of the arc is 60°
∴ α = 60°
∵ π = 
→ Substitute them in the rule above
∵ 22 =
× 2 ×
× r
∴ 22 =
r
→ Divide both sides by 
∴ 21 = r
(ii) The radius of the sector QOR is 21 cm
Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL
Tems11 [23]
Answer:
Yes they are
Step-by-step explanation:
In the triangle JKL, the sides can be calculated as following:
=> JK = 
=> JL = 
=> KL = 
In the triangle QNP, the sides can be calculate as following:
=> QN = ![\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-3-%28-4%29%5D%5E%7B2%7D%20%2B%20%280-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%5E%7B2%7D%2B%28-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%2B16%7D%3D%5Csqrt%7B17%7D)
=> QP = ![\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-4%29%5D%5E%7B2%7D%20%2B%20%281-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-3%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B9%2B9%7D%3D%5Csqrt%7B18%7D%20%3D%203%5Csqrt%7B2%7D)
=> NP = ![\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-3%29%5D%5E%7B2%7D%20%2B%20%281-0%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-4%29%5E%7B2%7D%2B1%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B16%2B1%7D%3D%5Csqrt%7B17%7D)
It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP
=> They are congruent triangles