A. Randomization
The selection is based on random selection
<span>4. Simplify the expression.
sine of x to the second power minus one divided by cosine of negative x</span>
<span>(1−sin2(x))/(sin(x)−csc(x))<span>
</span>sin2x+cos2x=1</span>
<span>1−sin2x=cos2x<span>
</span>cos2(x)/(sin(x)−csc(x))</span>
<span>csc(x)=1/sin(x)</span>
<span>cos2(x)/(sin(x)− 1/sin(x))= cos2(x)/((sin2(x)− 1)/sin(x))</span>
<span>sin2(x)− 1=-cos2(x)</span>
<span>cos2(x)/(( -cos2(x))/sin(x))
=-sin(x)</span>
<span>
the answer is the letter a)
-sin x
</span><span>
5. Find all solutions in the interval [0, 2π). (6 points)sin2x + sin x = 0</span> using a graphical tool
the solutions
x1=0
x2=pi
<span>x3=3pi/2
the answer is the letter </span><span>
D) x = 0, π, three pi divided by two</span>
Answer:
Option C
Step-by-step explanation:

Answer:
This proves that f is continous at x=5.
Step-by-step explanation:
Taking f(x) = 3x-1 and
, we want to find a
such that 
At first, we will assume that this delta exists and we will try to figure out its value.
Suppose that
. Then
.
Then, if
, then
. So, in this case, if
we get that
. The maximum value of delta is
.
By definition, this procedure proves that
. Note that f(5)=14, so this proves that f is continous at x=5.
Answer:
Step-by-step explanation:
When 3 is divided by 2, the quotient is 1 and remainder is 1
Whole number is the quotient.
Fraction : <u>remainder</u>
divisor
