Assuming R and H:
So volume is pir^2 * H = 1500 and H = 1500/(pir^2) while surface area is A= 2pir*H + 2pir^2
A = 2pir(r+h)= 2piR^2 + 2pir*1500/(pir^2)= 2piR^2 + 3000/r
For A to take minimum, get the derivative 4pir - 3000/R^2 and let it be 0
4pir^3 - 3000 = 0
r = cbrt(3000/(4pi)) ≈ 6.20
h = 1500/(pi(6.20)^2) ≈ 12.42
Step-by-step explanation:
see the attachment...............
Answer:
A = (x - 6)² sq. units or
A = (x² - 12x + 36) sq. units
Step-by-step explanation:
P = 4s, where s is the side.
4s = 4x - 24
s = x - 6
A = s²
A = (x - 6)² sq. units or
A = (x² - 12x + 36) sq. units
F(x) = 3x-6
add 6 to each side
6=3x
dived each side by 3
2=x
Answer:
2x⁴ + 4x³ + x² + 8x - 6
Step-by-step explanation:
(2x² + 4x - 3)(x² + 2)
2(x² + 2) · x² + 4x(x² + 2) - 3(x² + 2)
2x⁴ + 4x² + 4x(x² + 2) - 3(x² + 2)
2x⁴ + 4x² + 4x³ + 8x - 3x² - 6
2x⁴ + x² + 4x³ + 8x - 6
2x⁴ + 4x³ + x² + 8x - 6