Answer:
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed of a particular player was 95 miles per hour. Suppose that the statistician indicated that the serve speed distribution was skewed to the left. Which of the following values is most likely the value of the median serve speed? Explain your answer.
Step-by-step explanation:
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed of a particular player was 95 miles per hour. Suppose that the statistician indicated that the serve speed distribution was skewed to the left. Which of the following values is most likely the value of the median serve speed? Explain your answer.
a. What is the probability that both selected setups are for laptop computers?
b. What is the probability that both selected setups are desktop machines?
c. What is the probability that at least one selected setup is for a desktop computer?
d. What is the probability that at least one computer of each type is chosen for setup?
Answer:
The answer is C .
Step-by-step explanation:
“ -/x/ + 3”
Answer:
The equation that represents the population after T years is
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
Step-by-step explanation:
Population in the year 2018 ( P )= 7,632,819,325
Rate of increase R = 1.09 %
The population after T years is given by the formula
-------- (1)
Where P = population in 2018
R = rate of increase
T = time period
Put the values of P & R in above equation we get
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
This is the equation that represents the population after T years.
One of the ways to graph this is to use plug in a few x-values and get an idea of the shape. Since the x values keep getting squared, there is an exponential increase on either side of the y-axis. You can see this by plugging in a few values:
When
x=0,f(x)=0
x=1,f(x)=1^2=1
x=2,f(x)=2^2=4
x=3,f(x)=3^2=9
x=4,f(x)=4^2=16
The same holds true for negative x-values to the left of the y-axis since a negative value squared is positive. For example,
x=−1,f(x)=(−1)2=1*−1=1
x=2,f(x)=(−2)2=−2*−2=4
The graph of f(x)=x^2 is called a "Parabola." It looks like this:
Given: f(x)=(2x-2)/4
find f^-1(3)?
we need to find the inverse of f(x), so
x=(2y-2)/4
2y-2=4x
y-1=2x
y=2x+1
so, then f^-1(x)=2x+1
f^-1(3)=2(3)+1
=6+1
=7
so, the answer is 7