Answer:
We note that the equation that is compatible with the given equation is the kinematic equation of free fall where;
t² = 39.2 × 2/9.81
From which we have;
The time it takes the snowball to reach the ground is approximately 2.83 seconds
Step-by-step explanation:
The height of the building from which the ball is dropped, h = 39.2 m
The equation of the dropped a snowball, is given as follows;
t² = 39.2 × 9.8
Using the From the equation of free fall, we have;
s = u·t + 1/2·g·t²
Where;
u = The initial velocity = 0 m/s
t = The time of flight
g = The acceleration due to gravity = 9.81 m/s²
Therefore, we get;
∴ s = The height from which the snowball is dropped = 39.2 m
Therefore, we get;
39.2 = 0×t + 1/2×9.81×t²
∴ t² = 39.2 × 2/9.81 ≈ 7.99
t = √(7.99) ≈ 2.83
The time it takes the snowball to reach the ground, t ≈ 2.83 s.
<span>-1/4y(2y^3 - 8)
= -1/2 y^4 + 2 y</span>
Cº b<span>. </span>Points<span> on the </span>x<span>-axis ( </span>Y. 0)-7<span> (6 </span>2C<span>) are mapped to </span>points<span>. --IN- on the </span>y<span>-axis. ... </span>Describe<span> the transformation: 'Reflect A ALT if A(-5,-1), L(-</span>3,-2), T(-3,2<span>) by the </span>rule<span> (</span>x<span>, </span>y) → (x<span> + </span>3<span>, </span>y<span> + </span>2<span>), then reflect over the </span>y-axis, (x,-1) → (−x,−y<span>). A </span>C-2. L (<span>0.0 tº CD + ... </span>translation<span> of (</span>x,y) → (x–4,y-3)? and moves from (3,-6) to (6,3<span>), by how.</span>
Answer:
B . S /2rh =pi
Step-by-step explanation:
S = 2* pi * r*h
We are solving for pi
Divide both sides by 2rh to isolate pi
S/ 2rh = 2 * pi *r* h / 2rh
S /2rh =pi