Answer:
-blood type a
-blood type b
-SOMETIMES type o but very rarely.
Explanation:
Each biological parent donates one of their two ABO alleles to their child. A mother who is blood type O can only pass an O allele to her son or daughter. A father who is blood type AB could pass either an A or a B allele to his son or daughter. While a child could have the same blood type as one of his/her parents, it doesn't always happen that way. For example, parents with AB and O blood types can either have children with blood type A or blood type B.
Now it is clear that genes are what carry our traits through generations and that genes are made of deoxyribonucleic acid (DNA). But genes themselves don't do the actual work. Rather, they serve as instruction books for making functional molecules such as ribonucleic acid (RNA) and proteins, which perform the chemical reactions in our bodies.Proteins do many other things, too. They provide the body's main building materials, forming the cell's architecture and structural components. But one thing proteins can't do is make copies of themselves. When a cell needs more proteins, it uses the manufacturing instructions coded in DNA.The DNA code of a gene—the sequence of its individual DNA building blocks, labeled A (adenine), T (thymine), C (cytosine) and G (guanine) and collectively called nucleotides— spells out the exact order of a protein's building blocks, amino acids.
Occasionally, there is a kind of typographical error in a gene's DNA sequence. This mistake— which can be a change, gap or duplication—is called a mutation.
It’s trueeeee kids, don’t text and drive
<span>Once the enzyme binds to the specific substrate molecule, structural changes can occur in the active site to accommodate the product. This structural change lowers the activations energy and increases the rate of the reaction. The active site changes its shape until an enzyme-substrate complex is formed and activated.</span>