Answer:
-2
Step-by-step explanation:
We have to multiply 10 and 
Here we have to distribute the negative sign.
Distributive property = -(a) = -a
Using the above property, we get
= 
Now we have to multiply 10 and 
= 10 × 
= 
= 
Now we have to divide -10 by 5.
= -2
Answer:
x = 14.48
Step-by-step explanation:
first we have to see that we have the measurements from all sides
and we know that the angle between side 21 and 20 is 90 degrees
well to start we have to know the relationships between angles, legs and the hypotenuse.
a: adjacent
o: opposite
h: hypotenuse
sin α = o/h
cos α= a/h
tan α = o/a
let's take the left angle as α
sin α = 21/29
α = sin^-1 (21/29)
α = sin^-1 (0.7241)
α = 46.397
Now we do the same with the smaller triangle
tan α = o/a
sin 46.397 = x/20
0.724 = x/20
0.724 * 20 = x
14.48 = x
x = 14.48
if we want to check it we can do the same procedure with the other angle
Answer:
10.20% probability that a randomly chosen book is more than 20.2 mm thick
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
250 sheets, each sheet has mean 0.08 mm and standard deviation 0.01 mm.
So for the book.

What is the probability that a randomly chosen book is more than 20.2 mm thick (not including the covers)
This is 1 subtracted by the pvalue of Z when X = 20.2. So



has a pvalue of 0.8980
1 - 0.8980 = 0.1020
10.20% probability that a randomly chosen book is more than 20.2 mm thick