Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1
<h2><u>
Answer with explanation</u>
:</h2>
Let
be the population mean.
As per given , we have

Since the alternative hypothesis is right-tailed , so the test is a right-tailed test.
Also, population standard deviation is given
, so we perform one-tailed z-test.
Test statistic : 
, where
= Population mean
= Population standard deviation
n= sample size
= Sample mean
For n= 18 ,
,
,
, we have

P-value (for right tailed test): P(z>2.12) = 1-P(z≤ 2.12) [∵ P(Z>z)=1-P(Z≤z)]\
=1- 0.0340=0.9660
Decision : Since P-value(0.9660) > Significance level (0.01), it means we are failed to reject the null hypothesis.
[We reject null hypothesis if p-value is larger than the significance level . ]
Conclusion : We do not have sufficient evidence to show that the goal is not being met at α = .01 .
Substitute y = 15x to the equation y = 25 + 12.5x:
15x = 25 + 12.5x <em>subtract 12.5x from both sides</em>
2.5x = 25 <em>divide both sides by 2.5</em>
x = 10
Substitute the value of x to the equation y = 15x:
y = (15)(10)
y = 150
<h3>
Answer: x = 10 and y = 150</h3>
Answer:
12 because you have to divide 105 by 9 2inch is 11.6666666... so you round up and get 12