We need to find the future value of annuity due with the following given values :-
Payment, Pm = 295 dollars.
N=4 (for quarterly)
Rate at 10%, r = 0.10/4 = .025
Time for 6 years, T = 6x4 = 24.
Future Value formula is :-
![FV_{ad}=P_m*(1+r)*[\frac{(1+r)^T-1}{r} ] \\\\ FV_{ad}=295*(1+0.025)*[\frac{(1+0.025)^{24}-1}{0.025} ] \\\\ FV_{ad}=295*(1.025)*[\frac{(1.025)^{24}-1}{0.025} ] \\\\ FV_{ad}=295*(1.025)*[\frac{(1.80872595)-1}{0.025} ] \\\\ FV_{ad}=295*(1.025)*[\frac{0.80872595}{0.025} ] \\\\ FV_{ad}=295*(1.025)*(32.34903798) \\\\ FV_{ad}=9,781.54 \;dollars](https://tex.z-dn.net/?f=FV_%7Bad%7D%3DP_m%2A%281%2Br%29%2A%5B%5Cfrac%7B%281%2Br%29%5ET-1%7D%7Br%7D%20%5D%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D295%2A%281%2B0.025%29%2A%5B%5Cfrac%7B%281%2B0.025%29%5E%7B24%7D-1%7D%7B0.025%7D%20%5D%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D295%2A%281.025%29%2A%5B%5Cfrac%7B%281.025%29%5E%7B24%7D-1%7D%7B0.025%7D%20%5D%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D295%2A%281.025%29%2A%5B%5Cfrac%7B%281.80872595%29-1%7D%7B0.025%7D%20%5D%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D295%2A%281.025%29%2A%5B%5Cfrac%7B0.80872595%7D%7B0.025%7D%20%5D%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D295%2A%281.025%29%2A%2832.34903798%29%20%5C%5C%5C%5C%0AFV_%7Bad%7D%3D9%2C781.54%20%5C%3Bdollars)
Hence, the final answer is 9,781.54 dollars.