Answer: 35.4 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
Molality = 2.65
n= moles of solute =?
= volume of solution in ml = 445 ml
Putting in the values we get:


Mass of solute in g=
Thus 35.4 grams of
is needed to prepare 445 ml of a 2.65 m solution of
.
Answer:- 1840 g.
Solution:- We have been given with 3.35 moles of and asked to calculate it's mass.
To convert the moles to grams we multiply the moles by the molar mass of the compound. Molar mass of the compound is the sum of atomic masses of all the atoms present in it.
molar mass of = atomic mass of Hg + 2(atomic mass of I) + 6(atomic mass of O)
= 200.59+2(126.90)+6(16.00)
= 200.59+253.80+96.00
= 550.39 gram per mol
Let's multiply the given moles by the molar mass:

= 1843.8 g
Since, there are three sig figs in the given moles of compound, we need to round the calculated my to three sig figs also. So, on rounding off to three sig figs the mass becomes 1840 g.
Answer:
Combination reaction
Explanation:
N2+H2 = NH3
they combine together to form a product
Answer:
The solution is basic.
Explanation:
We can determine the nature of the solution via determining which has the large no. of millimoles (acid or base):
- If no. of millimoles of acid > that of base; the solution is acidic.
- If no. of millimoles of acid = that of base; the solution is neutral.
- If no. of millimoles of acid < that of base; the solution is basic.
- We need to calculate the no. of millimoles of acid and base:
no. of millimoles of acid (HNO₃) = MV = (1.3 M)(75.0 mL) = 97.5 mmol.
no. of millimoles of base (NaOH) = MV = (6.5 M)(150.0 mL) = 975.0 mmol.
<em>∴ The no. of millimoles of base (NaOH) is larger by 10 times than the acid (HNO₃).</em>
<em>So, the solution is: basic.</em>
It is too early for students to have career preferences while still in school
(i believe) <span />