Answer:
The biological carbon cycle is not only faster than the geological carbon cycle. The amount of carbon taken up by photosynthesis and released back to the atmosphere by respiration each year is 1,000 times greater than the amount of carbon that moves through the geological cycle on an annual basis.
Explanation:
The four levels of protein structure are distinguished from one another by the degree of complexity in the polypeptide chain. A single protein molecule may contain one or more of the protein structure types: primary, secondary, tertiary, and quaternary structure. 1. Primary Structure: describes the unique order in which amino acids are linked together to form a protein.
2. Secondary Structure: refers to the coiling or folding of a polypeptide chain that gives the protein its 3-D shape. There are two types of secondary structures observed in proteins. One type is the alpha (α) helix structure. This structure resembles a coiled spring and is secured by hydrogen bonding in the polypeptide chain. The second type of secondary structure in proteins is the beta (β) pleated sheet. This structure appears to be folded or pleated and is held together by hydrogen bonding between polypeptide units of the folded chain that lie adjacent to one another
3. Tertiary Structure: refers to the comprehensive 3-D structure of the polypeptide chain of a protein.
4. Quaternary Structure: is the structure of a protein macromolecule formed by interactions between multiple polypeptide chains. Each polypeptide chain is referred to as a subunit. Proteins with quaternary structure may consist of more than one of the same type of protein subunit.
Negative: Blood Glucose. The pancreas is releasing more and more insulin in order to get glucose levels in the blood back to a set point.
Positive: Estrogen levels. The anterior pituitary releases estrogen at different levels and the levels fluctuate.
Answer:
1)Ionic bond, also called electrovalent bond, type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound. Such a bond forms when the valence (outermost) electrons of one atom are transferred permanently to another atom.
2) The atom that loses the electrons becomes a positively charged ion (cation), while the one that gains them becomes a negatively charged ion
3)onic bonds are important because they allow the synthesis of specific organic compounds. Scientists can manipulate ionic properties and these interactions in order to form desired products. Covalent bonds are especially important since most carbon molecules interact primarily through covalent bonding.
Explanation: