Answer:
1. The Principle of superposition states that a strata of rock is younger than the one over which it is laid.
2. The intrusion of the younger rock by the principle of cross-cutting relationship
3. The intrusion igneous rock arrived after the rock it is found in had already been in place and is stable.
Step-by-step explanation:
In geology, the Principle of superposition states that, in its originally laid down state, a strata sequence consists of older rocks over which younger rocks are laid. That is, a stratum of rock is younger than the stratum upon which it rests.
The principle of cross cutting relationships in a geologic intrusion occurrence, the feature which intrudes or cut across another feature is always than the feature it cuts across.
The reason is that based on the geologic time frame, the rock 1 which ws cut across by rock 2 was already in the geologic zone in a more steady state than rock , therefore it is older than the cutting rock 2.
Answer:
The shape is not there so i can not solve it
Step-by-step explanation:
As a ratio, 5:86 represents students to teachers
We can set up the equation as 5/86=x/9460
Multiply 9460 to both sides
5x9460/86=x
47300/86=x
x=550
There are 550 professors
77/8= 9.625 and 31/4= 7.75...so 9.625-7.75= 1.875
Answer:
<u></u>
- <u>No. You would have to cut the number of veggie burgers in more than half.</u>
Explanation:
<u>1. Model the situation with a system of equations</u>
<u />
<u>a) Name the variables:</u>
- number of turkey burgers: t
- number of veggie burgers: v
<u />
<u>b) Number of burgers:</u>
<u />
<u>c) Cost of the 50 burgers:</u>
<u>2. Solve that system of equations:</u>
<u />
<u>a) System</u>
<u>b) Mutliply the first equation by 2 and subtract the second equation</u>
- 100 = 2t + 2v
- 90 = 2t + 1.50v
- v = 20 ⇒ t = 50 - 20 = 30
<u />
<u>c) How much would you spend if the next year you buy the double of 20 turkey burgers (40) and the half of 30 veggie burgers (15)</u>
- $2(40) + $1.50(15) = $80 + $22.50 = $102.50
Then, you if you double the number of turkey burgers, and cut the number burgers in half, you would spend more than $90 ($102.50).