1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
15

What is y=4x^2-9x+1 in vertex form

Mathematics
1 answer:
Anna11 [10]3 years ago
3 0

Answer:

y = 4 \left(x - \dfrac{9}{8} \right)^2 - \dfrac{65}{16}

Step-by-step explanation:

y = 4x^2 - 9x + 1

You need to complete the square on the right side.

y = (4x^2 - 9x) + 1

y = 4(x^2 - \dfrac{9}{4}x) + 1

y = 4 \left( x^2 - \dfrac{9}{4}x + \left( \dfrac{9}{8} \right)^2 \right) + 1 - 4\left( \dfrac{9}{8} \right)^2

y = 4 \left(x - \dfrac{9}{8} \right)^2 + 1 - 4 \left( \dfrac{81}{64} \right)

y = 4 \left(x - \dfrac{9}{8} \right)^2 + 1 - \dfrac{81}{16}

y = 4 \left(x - \dfrac{9}{8} \right)^2 + \dfrac{16}{16} - \dfrac{81}{16}

y = 4 \left(x - \dfrac{9}{8} \right)^2 - \dfrac{65}{16}

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Match the circle equations in general form with their corresponding equations in standard form. Not all will be used. 
Xelga [282]
<span>The standard form of the equation of a circumference is given by the following expression:

</span>(x-h)^{2}+(y-k)^{2}=r^{2} \\ \\ where \ (h, k) \ is \ the \ center \ of \ the \ circumference \ and \ r \ the \ radius
<span>
On the other hand, the general form is given as follows:

</span>x^{2}+y^{2}+Dx+Ey+F=0 \\ \\ where: \\ D=-2h, \ E=-2k, \ F=h^{2}+k^{2}-r^{2}<span>

In this way, we can order the mentioned equations as follows:

Equations in Standard Form:

</span>\bold{a)} \ (x-6)^{2}+(y-4)^{2}=56 \\ \bold{b)} \ (x-2)^{2} + (y+6)^{2}=60 \\ \bold{c)} \ (x+2)^{2}+(y+3)^{2}=18 \\ \bold{d)} \ (x+1)^{2}+(y-6)^{2}=46

Equations in General Form:

\bold{1)} \ x^{2}+y^{2}-4x+12y-20=0 \\ \bold{2)} \ x^{2}+y^{2}+6x-8y-10=0 \\ \bold{3)} \ 3x^{2}+3y^{2}+12x+18y-15=0 \\ \\ If \ we \ divide \ this \ equation \ by \ 3, \ the \ equation \ becomes: \\ x^{2}+y^{2}+4x+6y-5=0 \\ \\ \bold{4)} \ 5x^{2}+5y^{2}-10x+20y-30=0 \\ \\ If \ we \ divide \ this \ equation \ by \ 5, \ the \ equation \ becomes: \\ x^{2}+y^{2}-2x+4y-6=0 \\ \\ \bold{5)} \ 2x^{2}+2y^{2}-24x-16y-8=0 \\ \\ If \ we \ divide \ this \ equation \ by \ 2, \ the \ equation \ becomes: \\ x^{2}+y^{2}-12x-8y-4=0

\bold{6)} \ x^{2}+y^{2}+2x-12y

So let's match each equation:

\bold{From \ a)} \\ \\ (h,k)=(6,4),\ r=2\sqrt{14} \\ D=-12, \ E=-8 \\ F=-4

Then, its general form is:

x^{2}+y^{2}-12x-8y-4=0

<em><u>First. a) matches 5) </u></em>

\bold{From \ b)} \\ \\ (h,k)=(2,-6),\ r=2\sqrt{15} \\ D=-4, \ E=12 \\ F=-20

Then, its general form is:

x^{2}+y^{2}-4x+12y-20=0

<em><u>Second. b) matches 1) </u></em>

\bold{From \ c)} \\ \\ (h,k)=(-2,-3),\ r=3\sqrt{2} \\ D=4, \ E=6 \\ F=-5

Then, its general form is:

x^{2}+y^{2}+4x+6y-5=0

<em><u>Third. c) matches 3)</u></em>

\bold{From \ d)} \\ \\ (h,k)=(-1,6),\ r=\sqrt{46} \\ D=2, \ E=-12, \ F=-9

Then, its general form is: x^{2}+y^{2}+2x-12y-9=0

<em><u>Fourth. d) matches 6)</u></em>
6 0
3 years ago
Read 2 more answers
Plis only answer correctly
gregori [183]

Answer:

d

Step-by-step explanation:

d

dkimiunuhbubhwswdqwduoewdWEC W vcuuhdcosv

8 0
3 years ago
Read 2 more answers
PLZ HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!:(
-Dominant- [34]

Sorry for taking so long, it wont let me type a while ago. I have it all fix now hehe. I took a picture of my work, ask me if you still don’t understand.

8 0
3 years ago
Victoria had $200 in her account at the end of one year. At the first of each subsequent year she deposits $15 into the account
telo118 [61]

Answer:

A(t) = 200+15t(1+0.02)^{t}

Step-by-step explanation:

Since the interest is calculated on the new balance every year.

Hence the formula used for compound interest is:

A = P(1+\frac{r}{n}^{nt}

where, A =Amount after t years

P =Principal amount

200 is the initial balance and Since, here the $15 is added to the balance each year. Therefore, P = 200+15t

r = rate each year (0.02)

t = time (in years) (t)

n = no. of times the interest is compounded in a year (n=1)

Therefore, the recursive formula is:

A(t) = 200+15t(1+0.02)^{t}

6 0
3 years ago
Read 2 more answers
Other questions:
  • 4 students is what percent of 20 students
    6·2 answers
  • PLEASE HELP!!! How many solutions does each polynomial have?​
    5·1 answer
  • Find two fractions between 2/3 and 16/21
    7·1 answer
  • Maddy received $60 for her birthday and decided to go shopping. She bought 2 shirts priced at $12.25 each, a necklace for $8.50,
    13·2 answers
  • Consider the right triangle. A right triangles with side lengths 28 meters and 45 meters. The hypotenuse is unknown. What is the
    10·2 answers
  • Show the work about the problem
    8·1 answer
  • Solve the inequality.<br> -2(w+4) +9&lt;-11
    14·1 answer
  • Find the angle between following linesroot 3x-y=2,x-root 3y=7<br><br>​
    14·1 answer
  • What is the sum of the expression ? (9 c − 8 d ) + ( 2 c − 6 ) + ( − d + 3 )
    12·2 answers
  • FInd the area of the polygon
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!