<span>Electrons move from the atoms in the cloth to the atoms in the balloon, causing the balloon to have a negative charge.</span>
Explanation:
E, will be lower- this denotes the activation energy
Activation energy is the specific amount of energy required for a chemical reaction to occur. Enzymes lower the activation energy, significantly speeding up the reaction rate.
Further Explanation:
Enzymes are proteins that catalyze reactions by working on substrates to promote reactions-including amylase breakdown of broad polysaccharides. Some enzymes like catalase, allow for the degradation of hydrogen peroxide into oxygen and hydrogen; the pH, temperature, and involvement of inhibitors influence their specificity.
Learn more about cellular life at brainly.com/question/11259903
Learn more about proteins and carbohydrates at brainly.com/question/10744528
#LearnWithBrainly
Explanation:
<u>anaerobic process that restores NAD+ supply</u>
<u></u>
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation.
Further Explanation:
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
Tt - 2/4 = 1/2 or 50% Heterozygous TALL
tt - 2/4 = 1/2 or 50% Homozygous Dwarf
Explanation:
So let's make a Punnett for this so you can see what the outcome is yourself:
Tall is <u>dominant</u> - T
Dwarf is <u>recessive</u> - t
Heterozygous means that they have one of each allele. The genotype of one parent would be then Tt.
***It is heterozygous tall because Tall is a dominant trait so if it is accompanied by the recessive trait dwarf, then the Tall allele would mask it.
The other parent is a dwarf plant. The genotype would then be tt.
*** Now for a recessive trait to appear, it should not have a dominant trait mixed with it, which could mask it. The result then is homozygous recessive or homozygous Dwarf.
So now that we know the genotypes of the parent plants, we can put it into a Punnet:
t t
T Tt Tt
t tt tt
As you can see, out of the 4 outcomes we have:
Tt - 2/4 = 1/2 or 50% Heterozygous TALL
tt - 2/4 = 1/2 or 50% Homozygous Dwarf