The trigonometric function is given as

Apply the half angle identity to find the value of tan 75 ,

Here,

![\tan (75^{\circ})=\frac{\frac{1}{2}}{1-\frac{\sqrt[]{3}}{2}}=\frac{\frac{1}{2}}{\frac{2-\sqrt[]{3}}{2}}^{}](https://tex.z-dn.net/?f=%5Ctan%20%2875%5E%7B%5Ccirc%7D%29%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%7D%7B1-%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%7D%7B%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%7D%5E%7B%7D)
![\tan 75^{\circ}=\frac{1}{2-\sqrt[]{3}}](https://tex.z-dn.net/?f=%5Ctan%2075%5E%7B%5Ccirc%7D%3D%5Cfrac%7B1%7D%7B2-%5Csqrt%5B%5D%7B3%7D%7D)
Now rationalize the function.
![\tan 75^{\circ}=\frac{1}{2-\sqrt[]{3}}\times\frac{2+\sqrt[]{3}}{2+\sqrt[]{3}}=\frac{2+\sqrt[]{3}}{4-3}=\frac{2+\sqrt[]{3}}{1}](https://tex.z-dn.net/?f=%5Ctan%2075%5E%7B%5Ccirc%7D%3D%5Cfrac%7B1%7D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ctimes%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%3D%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B4-3%7D%3D%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B1%7D)
Again simplify the trigonometric function,

Hence the answer is 3.732.
Answer:
Statement D. is true
Step-by-step explanation:
Answer:
456
Step-by-step explanation:
Let X be the SATscore scored by the students
Given that X is normal (1000,200)
By converting into standard normal variate we can say that
is N(0,1)
To find the top 10% we consider the 90th percentile for z score
Z 90th percentile = 1.28

i.e. only students who scored 456 or above only should be considered.
Answer:
54779098.9847
Step-by-step explanation:
You add them together