Answer:
or 35.52
Step-by-step explanation:
1. ![\sqrt[3]{2883\sqrt[3]{723\sqrt{27}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2883%5Csqrt%5B3%5D%7B723%5Csqrt%7B27%7D%7D%7D)
2.
= ![\sqrt[3]{2169}\sqrt[6]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2169%7D%5Csqrt%5B6%5D%7B3%7D)
3. ![\sqrt[3]{2883\sqrt[3]{2169}\sqrt[6]{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2883%5Csqrt%5B3%5D%7B2169%7D%5Csqrt%5B6%5D%7B3%7D%7D)
4.
= ![\sqrt[3]{2883}\sqrt[3]{\sqrt[3]{2169}\sqrt[6]{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2883%7D%5Csqrt%5B3%5D%7B%5Csqrt%5B3%5D%7B2169%7D%5Csqrt%5B6%5D%7B3%7D%7D)
5. So, the answer is ![\sqrt[3]{2883}\sqrt[3]{\sqrt[3]{2169}\sqrt[6]{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2883%7D%5Csqrt%5B3%5D%7B%5Csqrt%5B3%5D%7B2169%7D%5Csqrt%5B6%5D%7B3%7D%7D)
Hope this helps! :)
Answer:
The area of the sphere in the cylinder and which locate above the xy plane is 
Step-by-step explanation:
The surface area of the sphere is:

and the cylinder
can be written as:


where;
D = domain of integration which spans between 
and;
the part of the sphere:

making z the subject of the formula, then :

Thus,


Similarly;


So;





From cylindrical coordinates; we have:

dA = rdrdθ
By applying the symmetry in the x-axis, the area of the surface will be:





![A = 2a^2 [ cos \theta + \theta ]^{\dfrac{\pi}{2} }_{0}](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B%20cos%20%5Ctheta%20%2B%20%5Ctheta%20%5D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B2%7D%20%7D_%7B0%7D)
![A = 2a^2 [ cos \dfrac{\pi}{2}+ \dfrac{\pi}{2} - cos (0)- (0)]](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B%20cos%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%2B%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%20-%20cos%20%280%29-%20%280%29%5D)
![A = 2a^2 [0 + \dfrac{\pi}{2}-1+0]](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B0%20%2B%20%5Cdfrac%7B%5Cpi%7D%7B2%7D-1%2B0%5D)


Therefore, the area of the sphere in the cylinder and which locate above the xy plane is 
Answer:
0.364
Step-by-step explanation: