1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
12

jill fish weighted 8 times as much as her parakeet together pets weighted 63 ounces how much does the fish weight

Mathematics
2 answers:
yawa3891 [41]3 years ago
4 0
Abot eight but correctly it will be 7.1
dimulka [17.4K]3 years ago
3 0
7.875 is googles answer
You might be interested in
Pleasesolvethis quickly !!!!!!!!!!!!!​
Pepsi [2]

Answer:

\sqrt[3]{2883}\sqrt[3]{\sqrt[3]{2169}\sqrt[6]{3}} or 35.52

Step-by-step explanation:

1. \sqrt[3]{2883\sqrt[3]{723\sqrt{27}}}

2. \sqrt[3]{723\sqrt{27}} = \sqrt[3]{2169}\sqrt[6]{3}

3. \sqrt[3]{2883\sqrt[3]{2169}\sqrt[6]{3}}

4. \sqrt[3]{2883\sqrt[3]{2169}\sqrt[6]{3}} = \sqrt[3]{2883}\sqrt[3]{\sqrt[3]{2169}\sqrt[6]{3}}

5. So, the answer is \sqrt[3]{2883}\sqrt[3]{\sqrt[3]{2169}\sqrt[6]{3}}

Hope this helps! :)

7 0
3 years ago
Find the area of the surface. The part of the sphere x2 + y2 + z2 = a2 that lies within the cylinder x2 + y2 = ax and above the
sineoko [7]

Answer:

The area of the sphere in the cylinder and which locate above the xy plane is \mathbf{ a^2 ( \pi -2)}

Step-by-step explanation:

The surface area of the sphere is:

\int \int \limits _ D \sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )   } \ dA

and the cylinder x^2 + y^2 =ax can be written as:

r^2 = arcos \theta

r = a cos \theta

where;

D = domain of integration which spans between \{(r, \theta)| - \dfrac{\pi}{2} \leq \theta  \leq \dfrac{\pi}{2}, 0 \leq r \leq acos \theta\}

and;

the part of the sphere:

x^2 + y^2 + z^2 = a^2

making z the subject of the formula, then :

z = \sqrt{a^2 - (x^2 +y^2)}

Thus,

\dfrac{\partial z}{\partial x} = \dfrac{-2x}{2 \sqrt{a^2 - (x^2+y^2)}}

\dfrac{\partial z}{\partial x} = \dfrac{-x}{ \sqrt{a^2 - (x^2+y^2)}}

Similarly;

\dfrac{\partial z}{\partial y} = \dfrac{-2y}{2 \sqrt{a^2 - (x^2+y^2)}}

\dfrac{\partial z}{\partial y} = \dfrac{-y}{ \sqrt{a^2 - (x^2+y^2)}}

So;

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\begin {pmatrix} \dfrac{-x}{\sqrt{a^2 -(x^2+y^2)}} \end {pmatrix}^2 + \begin {pmatrix} \dfrac{-y}{\sqrt{a^2 - (x^2+y^2)}}   \end {pmatrix}^2+1}\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{x^2+y^2}{a^2 -(x^2+y^2)}+1}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{x^2+y^2+a^2 -(x^2+y^2)}{a^2 -(x^2+y^2)}}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{a^2}{a^2 -(x^2+y^2)}}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = {\dfrac{a}{\sqrt{a^2 -(x^2+y^2)}}

From cylindrical coordinates; we have:

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = {\dfrac{a}{\sqrt{a^2 -r^2}}

dA = rdrdθ

By applying the symmetry in the x-axis, the area of the surface will be:

A = \int \int _D \sqrt{ (\dfrac{\partial z}{\partial x})^2+ (\dfrac{\partial z}{\partial y})^2+1} \ dA

A = \int^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}} \int ^{a cos \theta}_{0} \dfrac{a}{\sqrt{a^2 -r^2 }} \ rdrd \theta

A = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \sqrt{a^2 -r^2} \end {bmatrix}^{a cos \theta}_0 \ d \theta

A = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \sqrt{a^2 - a^2cos^2 \theta} + a \sqrt{a^2 -0}} \end {bmatrix} d \thetaA = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \ sin \theta +a^2 } \end {bmatrix} d \theta

A = 2a^2 [ cos \theta + \theta ]^{\dfrac{\pi}{2} }_{0}

A = 2a^2 [ cos \dfrac{\pi}{2}+ \dfrac{\pi}{2} - cos (0)- (0)]

A = 2a^2 [0 + \dfrac{\pi}{2}-1+0]

A = a^2 \pi - 2a^2

\mathbf{A = a^2 ( \pi -2)}

Therefore, the area of the sphere in the cylinder and which locate above the xy plane is \mathbf{ a^2 ( \pi -2)}

6 0
3 years ago
What is 11.875 as a fraction
Nookie1986 [14]
The answer is 11 7/8
6 0
3 years ago
Read 2 more answers
Round 0.3644 to the nearest thousandths place
ddd [48]

Answer:

0.364

Step-by-step explanation:

6 0
3 years ago
PLSSSS HELP
inessss [21]
The answer will be C
3 0
3 years ago
Other questions:
  • How to solve the equation:8y + 3y= 44
    13·2 answers
  • Applying Angle Pair Relationships
    11·1 answer
  • (02.01 LC) Simplify 4 over 7 ÷ 3 over negative 8. negative 32 over 21 negative 3 over 14 3 over 14 32 over 21
    15·1 answer
  • Toys R Us is having a 38% off sale on all their backpacks. If a backpack normally costs $22.00, how much will it be on sale?
    12·2 answers
  • Please help with this inequalities problem attached below.
    6·1 answer
  • 5 times a number (q) less 7 is 12
    9·1 answer
  • Find the sum end difference between the numbers 473 and the number obtained by reversing the digits​
    15·1 answer
  • What is the vertex point of y= - 2+3? Enter your answer as an ordered pair, e.g. (1,2).
    7·1 answer
  • V/24=23<br> what is v? and how do i solve it
    9·1 answer
  • Natalie buys organic almonds priced at
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!