Answer:
<h2><u><em>
2/7</em></u></h2>
Step-by-step explanation:
I answer for what I understand, the question is not clear.
2 divided by what times what equals 7
2 : x = 7
x = -2/-7
x = 2/7
-------------
check
2 : 2/7 = 7
2 * 7/2 = 7
7 = 7
the answer is good
A. $960.
B. $940?
c. Neither.
I hope thiss helped! I could be wrong, but I do believe A. and C. are correct.
Answer:
e. The probability of observing a sample mean of 5.11 or less, or of 5.29 or more, is 0.018 if the true mean is 5.2.
Step-by-step explanation:
We have a two-tailed one sample t-test.
The null hypothesis claims that the pH is not significantly different from 5.2.
The alternative hypothesis is that the mean pH is significantly different from 5.2.
The sample mean pH is 5.11, with a sample size of n=50.
The P-value of the test is 0.018.
This P-value corresponds to the probability of observing a sample mean of 5.11 or less, given that the population is defined by the null hypothesis (mean=5.2).
As this test is two-tailed, it also includes the probability of the other tail. That is the probability of observing a sample with mean 5.29 or more (0.09 or more from the population mean).
Then, we can say that, if the true mean is 5.2, there is a probability P=0.018 of observing a sample of size n=50 with a sample mean with a difference bigger than 0.09 from the population mean of the null hypothesis (5.11 or less or 5.29 or more).
The right answer is e.
I just had this problem at rsm
the answer is 950 trees
Answer:
See below...
Step-by-step explanation:
Theoretical probability is the probability that something should happen based on the beginning conditions. Such as having a jar of 30 marbles with 5 being blue. The probability of pulling out a blue marble when selecting 1 marble is
5/30, or 1/6. Theoretically you should pull one blue marble out every 6 times you pull a marble out.
This isn't guaranteed to happen though, that's where experimental probability comes form.
Experimental probability is the number of desired outcomes achieved, divided by the total number of outcomes. This is based on what actually happened. Say you selected a marble, and put it back 10 times, recording the color each time and you got 2 blue marbles. Your experimental probability is
2/10, or 1/5, which doesn't match the theoretical probability. The more times this experiment is conducted, the closer your result will be to the theoretical probability