
It tells you that over these intervals the balloon is going at a constant speed.
Each scenario can be used to simulate probability, and there are 3 correct scenarios and 2 incorrect scenarios in the list of options
<h3>How to categorize the simulations?</h3>
From the question, we have the following parameters:
- Number of throws = 30
- Number of hits = 20
This means that the probability of hit is:
P(Hit) = 20/30
Simplify
P(Hit) = 2/3
Using the complement rule,
P(Miss) = 1/3
The above means that the simulation that represents the situation must have the following parameters:
- P(Success) = 2/3
- P(Failure) = 1/3
- Number of experiments = 3
Using the above highlights, the correct scenarios are:
- Rolling a die three times with numbers 1 to 4 representing a hit
- Spinner a spinner of 3 equal sections three times with two sections representing hit
- Spinner a spinner of 6 equal sections three times with four sections representing hit
Read more about probability at:
brainly.com/question/25870256
#SPJ1
Answer: d. There is no relationship between education level and smoking habits.
Step-by-step explanation:
The null hypothesis is the affirmation that two parameters or phenomena do not have a relation between them.
Here the parameters are smoking and having a bachelor's degree or higher education.
Then the null hypothesis says that those two things do not have any relation, this would imply that the probability of being a smoker does not depend on having a degree or not.
Then the correct option is d "There is no relationship between education level and smoking habits."
Solution for f(g(5)):
The notation f(g(5)) or (f • g)(5) means that we first plug 5 into the function g(x), simplify, then plug the answer that we got to f(x). We will do this step-by-step:
Step 1: Plugging 5 to g(x)

Step 2: Plugging the answer to f(x)

ANSWER: f(g(5)) is equal to 3.
Domain:
For the function f(g(x)), we can find the domain by analyzing the domains of each individual functions separately and excluding certain values depending on the restrictions from the outermost function.
However, since both functions have all real numbers as its domain, we will not need to do any exclusion anymore.
ANSWER: The domain of the function is all real numbers.