Answer:
is a subset of 
Step-by-step explanation:
Required
Difference between subset and proper subset
To answer this question, I will use the following illustration.



In the above sets, set B is a proper subset of set A because all elements of B can be found in A, but not element of A can be found in B.
Set C is a subset of A because 
Using the above illustration, we have:
and 
is a subset of
, because 5 and 8 are in
but 2 which ca be found in
is not in 
Answer:

Step-by-step explanation:




1. 30.25
2. 81
3. Square Root of 2 plus 1, Negative Square Root of 2 plus 1.
4. Square Root of 57 minus 3, Negative Square root of 57 minus 3
5. Square Root of 53.25 minus 11, Negative Square root of 53.25 minus 11
-8.1
Step-by-step explanation:

<em>Times </em><em>all </em><em>by </em><em>9</em><em> </em><em>to </em><em>get </em><em>rid </em><em>of </em><em>fraction</em>
<em>
</em>
<em>Take </em><em>2</em><em>1</em><em>.</em><em>6</em><em> </em><em>away</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em>
<em>
</em>
<em>Divide</em><em> </em><em>by </em><em>-</em><em>4</em>
<em>
</em>