<span>452088, hope this helps:)</span>
Answer:
26
Step-by-step explanation:
a triangle is 180 degrees add 120 + 34 to get 154
180 -154 = 26
Answer: 
Step-by-step explanation:
Given: A cubic kilometer=
cubic centimeters
The volume of world’s oceans=
cubic kilometers of water.
⇒ The volume of world’s oceans=
cubic centimeters of water.
Volume of a bucket = 20,000 cubic centimeters of water.
The number of bucket-loads would it take to bucket out the world’s oceans

![\Rightarrow\ n=\frac{1.4\times10^{9+15}}{0.2\times10^5}......[a^n\times a^m=a^{m+n}]\\\Rightarrow\ n=7\times10^{24-5}.....[\frac{a^m}{a^n}=a^{m-n}]\\\Rightyarrow\ n=7\times10^{19}](https://tex.z-dn.net/?f=%5CRightarrow%5C%20n%3D%5Cfrac%7B1.4%5Ctimes10%5E%7B9%2B15%7D%7D%7B0.2%5Ctimes10%5E5%7D......%5Ba%5En%5Ctimes%20a%5Em%3Da%5E%7Bm%2Bn%7D%5D%5C%5C%5CRightarrow%5C%20n%3D7%5Ctimes10%5E%7B24-5%7D.....%5B%5Cfrac%7Ba%5Em%7D%7Ba%5En%7D%3Da%5E%7Bm-n%7D%5D%5C%5C%5CRightyarrow%5C%20n%3D7%5Ctimes10%5E%7B19%7D)
hence,
bucketloads would it take to bucket out the world’s oceans.
Answer:
P_max = 9.032 KN
Step-by-step explanation:
Given:
- Bar width and each side of bracket w = 70 mm
- Bar thickness and each side of bracket t = 20 mm
- Pin diameter d = 10 mm
- Average allowable bearing stress of (Bar and Bracket) T = 120 MPa
- Average allowable shear stress of pin S = 115 MPa
Find:
The maximum force P that the structure can support.
Solution:
- Bearing Stress in bar:
T = P / A
P = T*A
P = (120) * (0.07*0.02)
P = 168 KN
- Shear stress in pin:
S = P / A
P = S*A
P = (115)*pi*(0.01)^2 / 4
P = 9.032 KN
- Bearing Stress in each bracket:
T = P / 2*A
P = T*A*2
P = 2*(120) * (0.07*0.02)
P = 336 KN
- The maximum force P that this structure can support:
P_max = min (168 , 9.032 , 336)
P_max = 9.032 KN