<h3>
<u>Given</u><u> </u><u>:</u><u>-</u></h3>
- PQ = 8cm
- Radius = 5cm
- Two Tangents = P & Q.
<h3>
<u>Construction</u><u> </u><u>:</u><u>-</u></h3>
<h3>
<u>⟼</u><u> </u><u>Solution</u><u> </u><u>:</u><u>-</u></h3>
Here, ΔTPQ is isosceles and TO is the angle bisector of ∠PTO.
[∵ TP=TQ = Tangents from T upon the circle]
⠀⠀⠀⠀⠀⠀⠀⠀∴ OT⊥PQ
⠀⠀⠀
___________________________________________
By Applying Pythagoras Theorem in ∆OPR :
OR = √OP² - PR²
OR = √5² - 4²
OR = 3cm
__________________________________________
Now,
∠TPR + ∠RPO = 90° (∵TPO=90°)
∠TPR + ∠PTR (∵TRP=90°)
<u>
</u><u>∴ ∠RPO = ∠PTR</u>
⠀⠀
<u>∴ Right triangle TRP is similar to the right </u><u>triangle</u><u> </u><u>PR</u><u>O</u><u>.</u> [By A-A Rule of similar triangles]
⟼
⟼
⟼
<h3>Hence you got your answer here. </h3>
⠀⠀⠀⠀⠀
<h2>-MissAbhi</h2>
Answer:
The volume of the box is 200
Step-by-step explanation:
Answer:
Im sorry i dont get what this question asks could you rephrase
Step-by-step explanation:
Sqrt(56x^2) = x*sqrt(56) = x*sqrt(4*14) = x* sqrt(4) * sqrt(14)
= 2x*sqrt(14) (answer)