1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
5

How can I text on BRAINLY Please help me please

Mathematics
1 answer:
nexus9112 [7]3 years ago
8 0

Answer:

press their profile and there is a button that says add a message ill send you one.

Step-by-step explanation:

You might be interested in
What function was used to make that pattern​
Semenov [28]

Answer:

B

Step-by-step explanation:

The differences in the terms of f(x) are + 3, + 5, + 7

Since the differences are not constant the relationship is not linear

Note the differences in the differences are + 2, + 2,

The second differences are constant indicating a quadratic relationship

Note the relationship between x and f(x)

x = 1 → 1² = 1 ← require to add 5, that is 1 + 5 = 6 ← value of f(x)

x = 2 → 2²  = 4 ← require to add 5, that is 4 + 5 = 9 ← value of f(x)

x = 3 → 3² = 9 ← require to add 5, that is 9 + 5 = 14 ← value of f(x)

x = 4 → 4² = 16 ← require to add 5, that is 16 + 5 = 21 ← value of f(x)

Thus f(x) = x² + 5 → B

3 0
3 years ago
Given points A (1, 2/3), B (x, -4/5), and C (-1/2, 4) determine the value of x such that all three points are collinear
AlladinOne [14]

Answer:

x=\frac{83}{50}

Step-by-step explanation:

we know that

If the three points are collinear

then

m_A_B=m_A_C

we have

A (1, 2/3), B (x, -4/5), and C (-1/2, 4)

The formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}

step 1

Find the slope AB

we have

A(1,\frac{2}{3}),B(x,-\frac{4}{5})

substitute in the formula

m_A_B=\frac{-\frac{4}{5}-\frac{2}{3}}{x-1}

m_A_B=\frac{\frac{-12-10}{15}}{x-1}

m_A_B=-\frac{22}{15(x-1)}

step 2

Find the slope AC

we have

A(1,\frac{2}{3}),C(-\frac{1}{2},4)

substitute in the formula

m_A_C=\frac{4-\frac{2}{3}}{-\frac{1}{2}-1}

m_A_C=\frac{\frac{10}{3}}{-\frac{3}{2}}

m_A_C=-\frac{20}{9}

step 3

Equate the slopes

m_A_B=m_A_C

-\frac{22}{15(x-1)}=-\frac{20}{9}

solve for x

15(x-1)20=22(9)

300x-300=198

300x=198+300

300x=498

x=\frac{498}{300}

simplify

x=\frac{83}{50}

8 0
4 years ago
Calculate the product 78.93 times 32.45
Alona [7]

Answer:

2561.2785

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
F(x)= 5x^2+6, g(x)= 7x find (f o g)(x), find (g o f)(x), find f(g(-4)), fine g(f(5))
KiRa [710]

(f o g)(x) = 245x^2+6\\(g o f)(x) = 5x^2+42\\ f(g(-4)) = 3926\\g(f(5)) = 917

Step-by-step explanation:

Given

f(x) = 5x^2+6\\g(x) = 7x

So

(f o g)(x) = 5(7x)^2+6\\= 5(49x^2)+6\\=245x^2+6\\(g o f)(x) = 7(5x^2+6)\\= 35x^2+42\\(fog(x))=245x^2+6f(g(-4)) = 245(-4)^2+6 \\=245(16)+6\\=3920+6\\=3926\\g(f(x)) = 35x^2+42\\g(f(5)) = 35(5)^2+42\\=35(25)+42\\=875+42\\=917

Hence,

(f o g)(x) = 245x^2+6\\(g o f)(x) = 5x^2+42\\ f(g(-4)) = 3926\\g(f(5)) = 917

Keywords: functions, Function composition

Learn more about functions at:

  • brainly.com/question/4279146
  • brainly.com/question/4354581

#LearnwithBrainly

7 0
3 years ago
To find the answers
8_murik_8 [283]
1,876,200 - if it's higher than 5 go up - that means 1,880,000

1,876,200 - means 1,900,000
1,876,200 means 2,000,000
    
4 0
3 years ago
Other questions:
  • How do you solve this problem provide the work (textbook problem)
    14·1 answer
  • What are the seven steps needed to reconcile a bank statement?
    5·1 answer
  • Which number is located to the right of -1 2/3 on the horizontal number line?
    7·1 answer
  • the equation a = represents the angle measures, a, in a regular n-sided polygon. when the equation is solved for n, n is equal t
    12·2 answers
  • Question 2 : SQUARE ROOTS
    10·2 answers
  • The isosceles triangle has a perimeter of 7.5 m.
    5·1 answer
  • Maya counts 55 passengers on the bus. There were only 50 passengers on the bus. What is Maya's percent error?
    12·1 answer
  • Challenge A cell phone plan costs $19.80 per month for 400 minutes of talk time. It costs an additional $0.06 per minute for eac
    9·1 answer
  • For each expression, use the distributive property to write an equivalent expression.
    6·1 answer
  • Determine the domain and range of the given function.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!