Let,
the numbers be "x" and "y"
According to the question,
x = 4y ......................................................equation (1)

...................................equation (2)
Taking equation (2)

Substituting the value of "x" from equation (1), we get,





Cross multiplying, we get,


<u />



Now,
Taking equation (1)
x = 4y
Substituting the value of "y", we get

So, the numbers are
and
A.) Integers are positive and negative counting numbers. So, in order to find the integer coefficients, round off the coefficients in the equation to the nearest whole number. The function for g(x) is:
g(x) = 3x²+3x
B.) Substitute x=4 to the two functions.
f(x) = 2.912345x²<span>+3.131579x-0.099999
</span>f(4) = 2.912345(4)²+3.131579(4)-0.099999
f(4) = 59.023837
g(x) = 3x²+3x
g(4) = 3(4)²+3(4)
g(4) = 60
C.) The percentage error is equal to:
Percentage error = |g(4) - f(4)|/f(4) * 100
Percentage error = |60 - 59.023837|/59.023837 * 100
Percentage error = 1.65%
D.) If x is a large number, for example x=10 or x=20, then g(x) would be an overestimate. This is because the value of x is raised to the power of 2. So, as the x increases, the corresponding function would increase exponentially. Even at x=4, g(x) is already an overestimate. What more for larger values of x? That means that the gap from the true answer f(x) would increase.
Hi there!
»»————- ★ ————-««
I believe your answer is:
Option C
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻

⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.

Using the fact that cos is 2π-periodic, we have

That is,
for any
and integer
.

We get 2 solutions in the interval [0, 2π] for
and
,
