Answer:
![\huge\fbox\red{ᴀ}\huge\fbox\orange{ⁿ} \huge\fbox\pink{s}\huge\fbox\green{ʷ} \huge\fbox\blue{ᴇ}\huge\fbox\purple{ʳ}\](https://tex.z-dn.net/?f=%20%5Chuge%5Cfbox%5Cred%7B%E1%B4%80%7D%5Chuge%5Cfbox%5Corange%7B%E2%81%BF%7D%20%5Chuge%5Cfbox%5Cpink%7Bs%7D%5Chuge%5Cfbox%5Cgreen%7B%CA%B7%7D%20%5Chuge%5Cfbox%5Cblue%7B%E1%B4%87%7D%5Chuge%5Cfbox%5Cpurple%7B%CA%B3%7D%5C%20)
"From a quantum perspective, if you observed yourself in a particular new future that was different from your past, expected that reality to occur, and then emotionally embraced the outcome, you'd be-for a moment living in that future reality, & you would be conditioning your body to believe it was in that future in the present moment."
- Dr. Joe Dispenza
<em><u>Hope </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em>
<em><u>~ʆᵒŕ∂ཇꜱꜹⱽẻⱮë</u></em>
<h2>
Hello!</h2>
The answer is:
The first option, the amount dumped after 5 days is 0.166 tons.
<h2>Why?</h2>
To solve the problem, we need to integrate the given expression and evaluate using the given time.
So, integrating we have:
![\int\limits^5_0 {\frac{\sqrt{t} }{45} } \, dt=\int\limits^5_0 {\frac{1}{45} (t)^{\frac{1}{2} } } \, dt\\\\\int\limits^5_0 {\frac{1}{45} (t)^{\frac{1}{2} } } \ dt=\frac{1}{45}\int\limits^5_0 {t^{\frac{1}{2} } } } \ dt\\\\\frac{1}{45}\int\limits^5_0 {t^{\frac{1}{2} } } } \ dt=(\frac{1}{45}*\frac{t^{\frac{1}{2}+1} }{\frac{1}{2} +1})/t(5)-t(0)\\\\(\frac{1}{45}*\frac{t^{\frac{1}{2}+1} }{\frac{1}{2} +1})/t(5)-t(0)=(\frac{1}{45}*\frac{t^{\frac{3}{2}} }{\frac{3}{2}})/t(5)-t(0)](https://tex.z-dn.net/?f=%5Cint%5Climits%5E5_0%20%7B%5Cfrac%7B%5Csqrt%7Bt%7D%20%7D%7B45%7D%20%7D%20%5C%2C%20dt%3D%5Cint%5Climits%5E5_0%20%7B%5Cfrac%7B1%7D%7B45%7D%20%28t%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%5C%2C%20dt%5C%5C%5C%5C%5Cint%5Climits%5E5_0%20%7B%5Cfrac%7B1%7D%7B45%7D%20%28t%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%5C%20dt%3D%5Cfrac%7B1%7D%7B45%7D%5Cint%5Climits%5E5_0%20%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%7D%20%5C%20dt%5C%5C%5C%5C%5Cfrac%7B1%7D%7B45%7D%5Cint%5Climits%5E5_0%20%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%7D%20%5C%20dt%3D%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B1%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%20%2B1%7D%29%2Ft%285%29-t%280%29%5C%5C%5C%5C%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B1%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%20%2B1%7D%29%2Ft%285%29-t%280%29%3D%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7Bt%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%2Ft%285%29-t%280%29)
![(\frac{1}{45}*\frac{t^{\frac{3}{2}} }{\frac{3}{2}})/t(5)-t(0)=(\frac{1}{45}*\frac{2}{3}*t^{\frac{3}{2} })/t(5)-t(0)\\\\(\frac{1}{45}*\frac{2}{3}*t^{\frac{3}{2} })/t(5)-t(0)=(\frac{2}{135}*t^{\frac{3}{2}})/t(5)-t(0)\\\\(\frac{2}{135}*t^{\frac{3}{2}})/t(5)-t(0)=(\frac{2}{135}*5^{\frac{3}{2}})-(\frac{2}{135}*0^{\frac{3}{2}})\\\\(\frac{2}{135}*5^{\frac{3}{2}})-(\frac{2}{135}*0^{\frac{3}{2}})=\frac{2}{135}*11.18-0=0.1656=0.166](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7Bt%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%2Ft%285%29-t%280%29%3D%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7B2%7D%7B3%7D%2At%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%29%2Ft%285%29-t%280%29%5C%5C%5C%5C%28%5Cfrac%7B1%7D%7B45%7D%2A%5Cfrac%7B2%7D%7B3%7D%2At%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%29%2Ft%285%29-t%280%29%3D%28%5Cfrac%7B2%7D%7B135%7D%2At%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%2Ft%285%29-t%280%29%5C%5C%5C%5C%28%5Cfrac%7B2%7D%7B135%7D%2At%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%2Ft%285%29-t%280%29%3D%28%5Cfrac%7B2%7D%7B135%7D%2A5%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29-%28%5Cfrac%7B2%7D%7B135%7D%2A0%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%5C%5C%5C%5C%28%5Cfrac%7B2%7D%7B135%7D%2A5%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29-%28%5Cfrac%7B2%7D%7B135%7D%2A0%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%3D%5Cfrac%7B2%7D%7B135%7D%2A11.18-0%3D0.1656%3D0.166)
Hence, we have that the amount dumped after 5 days is 0.166 tons.
Have a nice day!
Answer:
35%
Step-by-step explanation:
Data provided in the question:
P(Master card) = 27% = 0.27
P(American express card) = 19% = 0.19
P( Visa card ) = 22% = 0.22
P( Master and American express card ) = 9% = 0.09
P( Visa and master card ) = 14% = 0.14
P( American express and visa card ) = 6% = 0.06
Now,
The probability of selecting a family that has either a Visa card or an American Express card
= P( Visa card ) + P( American express card ) - P( Visa and American express card )
= 0.22 + 0.19 - 0.06
= 0.35
or
= 0.35 × 100% = 35%
Answer:
A.
Step-by-step explanation:
when you distribute it you keep the subtraction sign and have to multiply 6 by 50 and then 6 by 1