1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
2 years ago
15

What is the sign of the point pf the product of nineteen negatice numbers?

Mathematics
1 answer:
Masteriza [31]2 years ago
6 0
A. Negative ♡

Im pretty sure about this

You might be interested in
A mosquito collides head-on with a car traveling 60 mph. Is the force of the mosquito on the car larger than, smaller than, or e
nirvana33 [79]
Smaller the mosquitoes possibly fly only 9mph a car coming at 60 would destroy mosquito obviously the force of a moving object will move it
5 0
3 years ago
A mixture of compounds X and Y in a 0.100-cm cell had an absorbance of 0.215 at 272 nm and 0.191 at 327 nm. Find [X] and [Y] in
Oksi-84 [34.3K]

Answer: The concentration of X is 7.13582\times 10^{-6} and the concentration of Y is 2.53159\times 10^{-5}.

Step-by-step explanation:

Since we have given that

At 272 nm, absorbance = 0.215

At 327 nm, absorbance = 0.191

As we have given that

                               Compound X             Compound Y

272                               16400                            3870

327                                3990                             6420

So, our equations becomes

16400C_1+3870c_2=0.215\\\\3990C_1+6420C_2=0.191

By solving these two equations, we get that

C_1=7.13582\times 10^{-6}\\\\C_2=2.53159\times 10^{-5}

Hence, the concentration of X is 7.13582\times 10^{-6} and the concentration of Y is 2.53159\times 10^{-5}.

5 0
3 years ago
Chandra earns $12.75 per hour at her job. How many hours will she have to work to earn $344.25
natali 33 [55]
She gotta work 27 hours cuz 344.24/12.75
6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
I need help with this ASAP
Mademuasel [1]

Answer:

It would be y=12x

Step-by-step explanation:

I think

8 0
2 years ago
Read 2 more answers
Other questions:
  • Pls help, answer question below. or just explain to me
    5·1 answer
  • At a local Chamber of Commerce, there are 8 men and 7 women present for an executive election of a president, vice-president and
    15·1 answer
  • If x = 4, then 5x = 20
    12·1 answer
  • Can someone help me please? I'm not good at these problems...
    8·1 answer
  • Answer the following question. Please show your work.
    12·1 answer
  • The field inside a running track is made up of rectangles that is 84.39 meters long and 73 M wide together with a half circle an
    12·1 answer
  • Use long division to find the quotient below. (x2 + x – 20) ÷ (x – 4)
    11·1 answer
  • The projectile motion of an object can be modeled using s(t)=gt^2+v0t+s0, where g is the acceleration due to gravity, t is the t
    15·2 answers
  • Stuffed animals at a toy
    5·2 answers
  • Find the distance between (-4,3,-6) and the origin ((X,Y,Z) Graph)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!