The pH of the weak acid is 3.21
Butyric acid is known as a weak acid, we need the concentration of [H+] formula of weak acid which is given by this equation :
![[H^{+}]=\sqrt{Ka . Ma}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D%5Csqrt%7BKa%20.%20Ma%7D)
where [H+] is the concentration of ion H+, Ka is the weak acid ionization constant, and Ma is the acid concentration.
Since we know the concentration of H+, the pH can be calculated by using
pH = -log[H+]
From question above, we know that :
Ma = 0.0250M
Ka = 1.5 x 10¯⁵
By using the equation, we can determine the concentration of [H+]
[H+] = √(Ka . Ma)
[H+] = √(1.5 x 10¯⁵ . 0.0250)
[H+] = 6.12 x 10¯⁴ M
Substituting the value of [H+] to get the pH
pH = -log[H+]
pH = -log(6.12 x 10¯⁴)
pH = 3.21
Hence, the pH of the weak acid c3h7cooh is 3.21
Find more on pH at: brainly.com/question/14466719
#SPJ4
The equation that models the exponential decline is y = 46348587109809610(0.9861)ˣ if the population over the past 20 years is provided.
<h3>What is the line of best fit?</h3>
A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.
Let's suppose the equation that models the exponential decline is:

From the data given, we can calculate the value of a and b:
a = 46348587109809610
b = 0.9861
y = 46348587109809610(0.9861)ˣ
Thus, the equation that models the exponential decline is y = 46348587109809610(0.9861)ˣ if the population over the past 20 years is provided.
Learn more about the line of best fit here:
brainly.com/question/14279419
#SPJ1
Answer: 7
Step-by-step explanation: The only pattern in this sequence that I can see is addition by 4. Therefore, the 3rd term is 15, the 2nd is 11, the 1st is 7.
Please consider Brainliest.
Answer:
3
Step-by-step explanation:
3 (1.5 - 0.5) = 3 (1) = 3 * 1 = 3. The value of the expression is 3.
Tell me if I'm wrong :)
Just plot the points on the graph.
2. You know since the graph is a straight line, the ratios are proportional and therefore equivalent