1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
5

What’s the least common multiple of three fiveand seven

Mathematics
1 answer:
Inga [223]3 years ago
4 0

3, 5 and 7 are three prime numbers. The least common multiple of prime numbers is simply the product of the numbers themselves: so you have

LCM(3,5,7) = 3\cdot 5\cdot 7 = 105

You might be interested in
The cost of 9 scarves is $83.25. What is the unit price?
melisa1 [442]

Answer:

9.25

Step-by-step explanation:

It's pretty simple all you have to do is 83.25 divided by 9.

7 0
3 years ago
Solve for F ------- 2/3 + f = 1/5<br> A= 13/15<br> B= 7/15<br> C= - !3/15<br> D= - 7/15
nikdorinn [45]

\\ \sf\longmapsto \dfrac{2}{3}+f=\dfrac{1}{5}

\\ \sf\longmapsto f=\dfrac{1}{5}-\dfrac{2}{3}

\\ \sf\longmapsto f=\dfrac{3-10}{15}

\\ \sf\longmapsto f=\dfrac{-7}{15}

8 0
3 years ago
Read 2 more answers
A sample of bacteria is growing at an hourly rate of 14% according to the exponential growth function. The sample began with 7 b
tatiyna

Answer:

125

Step-by-step explanation:

x(t) = x0 × (1 + r) t

where:

x(t) = the amount of some quantity at time t

x0 = initial amount at time t = 22

r = the growth rate

t = time

3 0
4 years ago
7x/3+2=-15 solve please!
marta [7]

How to solve your problem

Topics: Algebra, Polynomial

7

3

+

2

=

−

1

\frac{7x}{3}+2=-1

37x​+2=−1

Solve

1

Find common denominator

7

3

+

2

=

−

1

\frac{7x}{3}+2=-1

37x​+2=−1

7

3

+

3

⋅

2

3

=

−

1

\frac{7x}{3}+\frac{3 \cdot 2}{3}=-1

37x​+33⋅2​=−1

2

Combine fractions with common denominator

7

3

+

3

⋅

2

3

=

−

1

\frac{7x}{3}+\frac{3 \cdot 2}{3}=-1

37x​+33⋅2​=−1

7

+

3

⋅

2

3

=

−

1

\frac{7x+3 \cdot 2}{3}=-1

37x+3⋅2​=−1

3

Multiply the numbers

7

+

3

⋅

2

3

=

−

1

\frac{7x+{\color{#c92786}{3}} \cdot {\color{#c92786}{2}}}{3}=-1

37x+3⋅2​=−1

7

+

6

3

=

−

1

\frac{7x+{\color{#c92786}{6}}}{3}=-1

37x+6​=−1

4

Multiply all terms by the same value to eliminate fraction denominators

7

+

6

3

=

−

1

\frac{7x+6}{3}=-1

37x+6​=−1

3

(

7

+

6

3

)

=

3

(

−

1

)

3(\frac{7x+6}{3})=3\left(-1\right)

3(37x+6​)=3(−1)

5

Cancel multiplied terms that are in the denominator

3

(

7

+

6

3

)

=

3

(

−

1

)

3(\frac{7x+6}{3})=3\left(-1\right)

3(37x+6​)=3(−1)

7

+

6

=

3

(

−

1

)

7x+6=3\left(-1\right)

7x+6=3(−1)

6

Multiply the numbers

7

+

6

=

3

(

−

1

)

7x+6={\color{#c92786}{3}}\left({\color{#c92786}{-1}}\right)

7x+6=3(−1)

7

+

6

=

−

3

7x+6={\color{#c92786}{-3}}

7x+6=−3

7

Subtract  

6

6

6

from both sides of the equation

7

+

6

=

−

3

7x+6=-3

7x+6=−3

7

+

6

−

6

=

−

3

−

6

7x+6{\color{#c92786}{-6}}=-3{\color{#c92786}{-6}}

7x+6−6=−3−6

8

Simplify

Subtract the numbers

7

=

−

9

7x=-9

7x=−9

9

Divide both sides of the equation by the same term

7

=

−

9

7x=-9

7x=−9

7

7

=

−

9

7

\frac{7x}{{\color{#c92786}{7}}}=\frac{-9}{{\color{#c92786}{7}}}

77x​=7−9​

10

Simplify

Cancel terms that are in both the numerator and denominator

=

−

9

7

x=\frac{-9}{7}

x=7−9​  

Solution

=

−

9

7

4 0
3 years ago
Find y' if y= In (x2 +6)^3/2<br> y'=
Schach [20]

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • Solve for x<br> 6(2x + 1) = 18
    5·2 answers
  • How do I find the slope if the fraction is improper? Do I leave it the same or?
    7·2 answers
  • Help me plissssssssssss
    11·1 answer
  • Need help asap
    10·2 answers
  • Divide the given polynomial by given monomial.​
    12·2 answers
  • What is the answer<br> 2/3 divide by 4
    15·2 answers
  • Need help will give thanks and brainliest
    6·1 answer
  • Mrs. Dobbs wants to replace the grass in her backyard and needs to find the area, in square feet, so she can purchase sod. The a
    9·2 answers
  • All numbers that are between 20 and 40 that are divisible by 4
    14·2 answers
  • Select the correct answer.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!