Answer:
168 ft
Step-by-step explanation:
To calculate the area of a parallelogram, the formula is Area=base*height
In this case, the base is 14ft and the height is 12ft
so,
14ft*12ft=168ft^2
He needs 168ft or fabric to cover the area
sin(<em>θ</em>) + cos(<em>θ</em>) = 1
Divide both sides by √2:
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = 1/√2
We do this because sin(<em>x</em>) = cos(<em>x</em>) = 1/√2 for <em>x</em> = <em>π</em>/4, and this lets us condense the left side using either of the following angle sum identities:
sin(<em>x</em> + <em>y</em>) = sin(<em>x</em>) cos(<em>y</em>) + cos(<em>x</em>) sin(<em>y</em>)
cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)
Depending on which identity you choose, we get either
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = sin(<em>θ</em> + <em>π</em>/4)
or
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = cos(<em>θ</em> - <em>π</em>/4)
Let's stick with the first equation, so that
sin(<em>θ</em> + <em>π</em>/4) = 1/√2
<em>θ</em> + <em>π</em>/4 = <em>π</em>/4 + 2<em>nπ</em> <u>or</u> <em>θ</em> + <em>π</em>/4 = 3<em>π</em>/4 + 2<em>nπ</em>
(where <em>n</em> is any integer)
<em>θ</em> = 2<em>nπ</em> <u>or</u> <em>θ</em> = <em>π</em>/2 + 2<em>nπ</em>
<em />
We get only one solution from the second solution set in the interval 0 < <em>θ</em> < 2<em>π</em> when <em>n</em> = 0, which gives <em>θ</em> = <em>π</em>/2.
Step-by-step explanation:
Given that,
- Length of the one portion of the board = x feet
- Length of the another portion = (7x – 9) feet
According to the question,
Total length = Sum of the length of the two pieces
Total length = {x + (7x – 9)} feet
Total length = {x + 7x – 9} feet
<u>Total length = (8x – 9) feet</u>
Therefore, the total length of the board as a simplified expression in x is (8x – 9) feet.
None of the offered choices is correct.
The radical cannot be simplified. If rewritten, it must be written as something like
![x \sqrt[3]{ \frac{6}{x}}](https://tex.z-dn.net/?f=%20x%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6%7D%7Bx%7D%7D%20)
or
<span>Enter your equation (2x)(3y)(4z) = 24xyz on the website www.mathpapa.com. That site is amazing! I use it for all my algebra problems.
</span>