Answer: x = 15, ∠K = 45.7°, ∠L = 45.7°, ∠M = 88.6°
<u>Step-by-step explanation:</u>
Since ∠K ≅ ∠L, then ΔKLM is an isoceles triangle with base KL
KM ≅ LM
3x + 23 = 7x - 37
23 = 4x - 37
60 = 4x
15 = x
KM = LM = 3x + 23
= 3(15) + 23
= 45 + 23
= 68
KL = 9x - 40
= 9(15) - 40
= 135 - 40
= 95
Next, draw a perpendicular bisector KN from K to KL. Thus, N is the midpoint of KL and ΔMNL is a right triangle.
- Since N is the midpoint of KL and KL = 95, then NL = 47.5
- Since ∠N is 90°, then NL is adjacent to ∠l and ML is the hypotenuse
Use trig to solve for ∠L (which equals ∠K):
cos ∠L = 
cos ∠L = 
∠L = cos⁻¹ 
∠L = 45.7
Triangle sum Theorem:
∠K + ∠L + ∠M = 180°
45.7 + 45.7 + ∠M = 180
91.4 + ∠M = 180
∠M = 88.6
Answer:
dddddddddddddddddddddddd could be rewritten as d^24 because d*d*d*d*d*d*d... = d^24
Step-by-step explanation:
When we multiply all of the d's together we get
.
The general vertex form is this:
v(x) = a (x-h)2 + k
where (h,k) is the coordinates of the of vertex.
and a indicates the widening or shrinking of the function compared to another parabolic function. If a become bigger, the graph becomes narrower. If a becomes negative, the graph is reflected over the x-axis.
Comparing f(x) = x2 with g(x) = -3(x+6)2 + 48, we have the following transformations:
The graph is reflected over the x-axis
The graph is made narrower.
The graph is shifted 6 units to the left.
The graph is shifted 48 units up.
From the choices we only have:
<span>The graph of f(x) = x2 is made narrower</span>
Answer:
126.4 cm
Step-by-step explanation:
1. 15.8 * 3 = 47.4 (This is the length)
2. Find half of the rectangle
47.4 + 15.8 (width) = 63.2
3. Find the whole perimeter
63.2 * 2 = 126.4
Answer:
5/25, 1/5, or 20%
Step-by-step explanation:
Based on the experiment the dice lands on 2 five times, giving you the experimental probability