The first one with the boxing crab and anemone is mutualism.
The second one with the dog and flea is parasitism.
C) As hydrilla is aquatic in nature, the roots do not have to search for water, and there is no need for xylem to absorb water because the plant is surrounded by water.
The sun, diamond mines, the air we breathe, labs, steel factories.
Answer:
Option B, they negate each other
Explanation:
Electrical gradient force is more or less equal to the chemical gradient during an active transport. The number of electron produced during the establishment of chemical gradients, were transferred through the cellular circuit to produce electrical gradient of an equivalent amount in opposite path.
Thus, both electrical and chemical gradient are opposite to each other and hence they negate out each other.
Option B
Answer:
The correct answer is 3: "<em>High levels of Ca2+ are expected to be found </em><em>within the sarcoplasmic reticulum</em>".
Explanation:
Muscular contraction is a highly regulated process that depends on free calcium concentration in the cytoplasm. Amounts of cytoplasmic calcium are regulated by <u>sarcoplasmic reticulum</u> that functions as a storage of the ion.
When a nerve impulse reaches the membrane of a muscle fiber, through acetylcholine release, the membrane depolarizes producing the entrance of calcium from <u>extracellular space</u>. The impulse is transmitted along the membrane to the sarcoplasmic reticulum, from where calcium is released. At this point, <em>tropomyosin is obstructing binding sites for myosin on the thin filament</em>. The calcium channel in the sarcoplasmic reticulum controls the ion release, that activates and regulates muscle contraction, by increasing its cytoplasmic levels. When <em>calcium binds to the troponin C</em>, <em>the troponin T alters the tropomyosin by moving it and then unblocks the binding sites,</em> making possible the formation of <em>cross-bridges between actin and myosin filaments.</em> When myosin binds to the uncovered actin-binding sites, ATP is transformed into ADP and inorganic phosphate.
Z-bands are then pulled toward each other, thus shortening the sarcomere and the I-band, and producing muscle fiber contraction.