1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
5

3y + 8 = I 7 Also can you show me the written steps?

Mathematics
2 answers:
Anna11 [10]3 years ago
7 0

Answer:

efrwef mrfbi fni jr ijriroj23rij r

r3jrpo3jr23

r3r

2r2

Step-by-step explanation:

3rn3u 4 i8jh34i j4i j40jr0 9j 4j 9043jt44j4542

Ivahew [28]3 years ago
5 0
3y=17-8
3y=9 Divide 9 and 3
Y=3
You might be interested in
Suppose that Y has density function
zvonat [6]

I'm assuming

f(y)=\begin{cases}ky(1-y)&\text{for }0\le y\le1\\0&\text{otherwise}\end{cases}

(a) <em>f(x)</em> is a valid probability density function if its integral over the support is 1:

\displaystyle\int_{-\infty}^\infty f(x)\,\mathrm dx=k\int_0^1 y(1-y)\,\mathrm dy=k\int_0^1(y-y^2)\,\mathrm dy=1

Compute the integral:

\displaystyle\int_0^1(y-y^2)\,\mathrm dy=\left(\frac{y^2}2-\frac{y^3}3\right)\bigg|_0^1=\frac12-\frac13=\frac16

So we have

<em>k</em> / 6 = 1   →   <em>k</em> = 6

(b) By definition of conditional probability,

P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = P(<em>Y</em> ≤ 0.4 and <em>Y</em> ≤ 0.8) / P(<em>Y</em> ≤ 0.8)

P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = P(<em>Y</em> ≤ 0.4) / P(<em>Y</em> ≤ 0.8)

It makes sense to derive the cumulative distribution function (CDF) for the rest of the problem, since <em>F(y)</em> = P(<em>Y</em> ≤ <em>y</em>).

We have

\displaystyle F(y)=\int_{-\infty}^y f(t)\,\mathrm dt=\int_0^y6t(1-t)\,\mathrm dt=\begin{cases}0&\text{for }y

Then

P(<em>Y</em> ≤ 0.4) = <em>F</em> (0.4) = 0.352

P(<em>Y</em> ≤ 0.8) = <em>F</em> (0.8) = 0.896

and so

P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = 0.352 / 0.896 ≈ 0.393

(c) The 0.95 quantile is the value <em>φ</em> such that

P(<em>Y</em> ≤ <em>φ</em>) = 0.95

In terms of the integral definition of the CDF, we have solve for <em>φ</em> such that

\displaystyle\int_{-\infty}^\varphi f(y)\,\mathrm dy=0.95

We have

\displaystyle\int_{-\infty}^\varphi f(y)\,\mathrm dy=\int_0^\varphi 6y(1-y)\,\mathrm dy=(3y^2-2y^3)\bigg|_0^\varphi = 0.95

which reduces to the cubic

3<em>φ</em>² - 2<em>φ</em>³ = 0.95

Use a calculator to solve this and find that <em>φ</em> ≈ 0.865.

8 0
3 years ago
ASAP HELP WITHIN 5 MINUTES PLEASE
larisa [96]

Answer:

1050 not 100% sure tho


4 0
3 years ago
Enter the y coordinate of the solution to this system of equations.
riadik2000 [5.3K]
-x-y=1
-y=1+x
y=-1-x

-1-x=-2x+9
-x=-2x+10
x=10

y=-1-10
y=-11
3 0
3 years ago
Find m∠I. Put the answer below.<br><br><br>m∠I =
Mamont248 [21]

Answer:

45°

...

...

...

..

...

..........

4 0
2 years ago
If y varies inversely as x and y=32 when x=3, find x when y=15
deff fn [24]
Y=kx, k is not equal to 0
when y=32,x=3, 32=3k
                           k=32/3
so y=32/3*x
when y=15, 15=32/3*x
                     x=45/32

5 0
3 years ago
Other questions:
  • PLEASE HELPPPPP.
    9·1 answer
  • Which logarithmic equation is equivalent to the exponential equation below e^2x=7
    11·1 answer
  • plz i need help anyone?A.One leg lies below the x-axis.           B.The origin lies outside of the triangle.                  C.
    6·1 answer
  • Mr. Marvi's Class is fund-raising for a field trip that costs $1254. The school is
    5·2 answers
  • In the expression below, k is an integer.
    14·1 answer
  • What is the area of a triangle with base of 20 feet and a vertical height
    13·1 answer
  • What is the lowest value of the range of the function
    12·1 answer
  • una escalera recostada de la pared , con el piso si la escalera mide 8' y la distancia de la base a la pared es de 6'. Halla el
    15·1 answer
  • What is the mass of 18 crayons
    13·1 answer
  • PLEASE HELP!! I NEED TO PASS MATH
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!