1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
11

According to the Rational Root Theorem, which statement about f(x) = 66x4 – 2x3 + 11x2 + 35 is true? Any rational root of f(x) i

s a factor of 35 divided by a factor of 66. Any rational root of f(x) is a multiple of 35 divided by a multiple of 66. Any rational root of f(x) is a factor of 66 divided by a factor of 35. Any rational root of f(x) is a multiple of 66 divided by a multiple of 35.
Mathematics
2 answers:
Kipish [7]3 years ago
8 0

Answer:

Option A is the shorter anwser. It's the same thing as what the other guy said

mr Goodwill [35]3 years ago
6 0

Answer:

Any rational root of f(x) is a factor of 35 divided by a factor of 66.

Step-by-step explanation:

When you divide the expression by the leading coefficient, the resulting constant term is the product of all the roots. That is 35/66 is the product of all of the roots of the expression.

Any root will be a factor of 35/66. Rational roots will be a factor of 35 divided by a factor of 66.

___

When the polynomial is of odd degree, the product of roots is the opposite of the constant divided by the leading coefficient.

You might be interested in
Figure LMNO is a parallelogram.<br> What is the value of x?<br><br> a.8<br> b.10<br> c.13<br> d.20
Komok [63]
I hope this helps you




M and N complimentary angle



3x+8x-40=180



11x=220


x=20
3 0
4 years ago
Read 2 more answers
A. Are the expressions and equivalent expressions? B. In two or more complete sentences, justify your answer to A.
pychu [463]

Answer:

What's the expressions?

5 0
4 years ago
14, 16, and 20 using elimination method showing work. Thanks so much
Nady [450]

14) x=0, y=3, z=-2

Solution Set (0,3,-2)

16) x=1, y=1 and z=1

Solution set = (1,1,1)

20)  x = -263/31, y=164/31 ,z=122/31

Solution set (-263/31, 164/31 ,122/31)

Step-by-step explanation:

14)

x-y+2z=-7\\y+z=1\\x=2y+3z

Rearranging and solving:

x-y+2z=-7\,\,\,eq(1)\\y+z=1\,\,\,eq(2)\\x-2y-3z=0\,\,\,eq(3)

Eliminate y:

Adding eq(1) and eq(2)

x-y+2z=-7\,\,\,eq(1)\\ 0x+y+z=1\,\,\,eq(2)\\-------\\x+3z=-6\,\,\,eq(4)

Multiply eq(2) with 2 and add with eq(3)

0x+2y+2z=2\,\,\,eq(2)\\\\x-2y-3z=0\,\,\,eq(3)\\--------\\x-z=2\,\,\,eq(5)

Eliminate x:

Subtract eq(4) and eq(5)

x+3z=-6\,\,\,eq(4)\\x-z=2\,\,\,eq(5)\\-\,\,\,+\,\,\,\,\,\,-\\---------\\4z=-8\\z= -2

So, value of z = -2

Now putting value of z in eq(2)

y+z=1\\y+(-2)=1\\y-2=1\\y=1+2\\y=3

So, value of y = 3

Now, putting value of z and y in eq(1)

x-y+2z=-7\\x-(3)+2(-2)=-7\\x-3-4=-7\\x-7=-7\\x=-7+7\\x=0

So, value of x = 0

So, x=0, y=3, z=-2

S.S(0,3,-2)

16)

3x-y+z=3\\\x+y+2z=4\\x+2y+z=4

Let:

3x-y+z=3\,\,\,eq(1)\\x+y+2z=4\,\,\,eq(2)\\x+2y+z=4\,\,\,eq(3)

Eliminating y:

Adding eq(1) and (2)

3x-y+z=3\,\,\,eq(1)\\x+y+2z=4\,\,\,eq(2)\\---------\\4x+3z=7\,\,\,eq(4)

Multiply eq(1) by 2 and add with eq(3)

6x-2y+2z=6\,\,\,eq(1)\\x+2y+z=4\,\,\,eq(3)\\---------\\7x+3z=10\,\,\,eq(5)

Now eliminating z in eq(4) and eq(5) to find value of x

Subtracting eq(4) and eq(5)

4x+3z=7\,\,\,eq(4)\\7x+3z=10\,\,\,eq(5)\\-\,\,\,-\,\,\,\,\,\,\,\,\,\,-\\-----------\\-3x=-3\\x=-3/-3\\x=1

So, value of x = 1

Putting value of x in eq(4) to find value of x:

4x+3z=7\\4(1)+3z=7\\4+3z=7\\3z=7-4\\z=3/3\\z=1

So, value of z = 1

Putting value of x and z in eq(2) to find value of y:

x+y+2z=4\\1+y+2(1)=4\\1+y+2=4\\y+3=4\\y=4-3\\y=1

So, x=1, y=1 and z=1

Solution set = (1,1,1)

20)

x+4y-5z=-7\\3x+2y+2z=-7\\2x+y+5z=8

Let:

x+4y-5z=-7\,\,\,eq(1)\\3x+2y+2z=-7\,\,\,eq(2)\\2x+y+5z=8\,\,\,eq(3)

Solving:

Eliminating z :

Adding eq(1) and eq(3)

x+4y-5z=-7\,\,\,eq(1)\\2x+y+5z=8\,\,\,eq(3)\\---------\\3x+5y=1\,\,\,eq(4)

Multiply eq(1) with 2 and eq(2) with 5 and add:

2x+8y-10z=-14\,\,\,eq(1)\\15x+10y+10z=-35\,\,\,eq(2)\\----------\\17x+18y=-49\,\,\,eq(5)

Eliminate y:

Multiply eq(4) with 18 and eq(5) with 5 and subtract:

54x+90y=18\\85x+90y=-245\\-\,\,\,-\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\\-------\\-31x=158\\x=-\frac{263}{31}

So, value of x = -263/31

Putting value of x in eq(4)

3x+5y=1\\3(-\frac{263}{31})+5y=1\\-\frac{789}{31}+5y=1 \\5y=1+\frac{789}{31}\\5y=\frac{820}{31}\\y=\frac{820}{31*5}\\y=\frac{164}{31}

Now putting x = -263/31 and y=164/31 in eq(1) and finding z:

We get z=122/31

So, x = -263/31, y=164/31 ,z=122/31

Solution set (-263/31, 164/31 ,122/31)

Keywords: Solving system of Equations

Learn more about Solving system of Equations at:

  • brainly.com/question/2115716
  • brainly.com/question/13168205
  • brainly.com/question/6075514

#learnwithBrainly

4 0
3 years ago
The cost to run Machine 1 for an hour is $2. During that
katen-ka-za [31]

Answer:

Math SMH

Step-by-step explanation:

8 0
3 years ago
Y=2x+3<br>4x+y=33<br>substitution form<br>(x, y)
galina1969 [7]
(5,13)

I hope the answer will help you in the solution if you want any question no hesitation

6 0
4 years ago
Other questions:
  • 1/15y^9
    5·1 answer
  • PLEASE HELP ANSWER WITH ALL STEPS PLS
    15·2 answers
  • The sum of 14 and a number is equal to 17
    7·2 answers
  • Which of the following is written as a rational function
    11·1 answer
  • Two identical rubber balls are dropped from different heights. Ball 1 is dropped from a height of 109 feet, and ball 2 is droppe
    13·2 answers
  • Find the common difference of the arithmetic sequence -18, -12, -6, ...
    5·1 answer
  • Find the minimum value of the region formed by the system of equations and functions below.
    8·1 answer
  • A jar contains 40 marbles. 12 are green, 14 are blue and the rest are red. What is the probability of picking a green marble?
    14·1 answer
  • Please help me this is called Writing Equations
    14·1 answer
  • Simplify the expression. -8n - 2n​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!