Answer is 3.25h = m
That’s because Sarah’s earning 3.25 per hour so if you want to figure out how much money she’s making you can just substitute your value for h. Pls mark brainliest if possible, have a nice day
Answer:
Option A ( radius is twice the daimeter )
Step-by-step explanation:
The relationship between radius and daimeter is given as
Radius² = Daimeter ⇒ r² = d
And cricumference can be calculated with radius
As circumference is 2πr
Answer:
2b+t/2=a
Step-by-step explanation:
3a + 4b = 5a-t
-3a -3a
4b = 2a - t
+t +t
4b + t = 2a
/2 /2
2b+t/2=a
Slope of line = tan(120) = -tan(60) = - √3
Distance from origin = 8
Let equation be Ax+By+C=0
then -A/B=-√3, or
B=A/√3.
Equation becomes
Ax+(A/√3)y+C=0
Knowing that line is 8 units from origin, apply distance formula
8=abs((Ax+(A/√3)y+C)/sqrt(A^2+(A/√3)^2))
Substitute coordinates of origin (x,y)=(0,0) =>
8=abs(C/sqrt(A^2+A^2/3))
Let A=1 (or any other arbitrary finite value)
solve for positive solution of C
8=C/√(4/3) => C=8*2/√3 = (16/3)√3
Therefore one solution is
x+(1/√3)+(16/3)√3=0
or equivalently
√3 x + y + 16 = 0
Check:
slope = -1/√3 .....ok
distance from origin
= (√3 * 0 + 0 + 16)/(sqrt(√3)^2+1^2)
=16/2
=8 ok.
Similarly C=-16 will satisfy the given conditions.
Answer The required equations are
√3 x + y = ± 16
in standard form.
You can conveniently convert to point-slope form if you wish.
Answer:
The maximum value of the table t(x) has a greater maximum value that the graph g(x)
Step-by-step explanation:
The table shows t(x) has two (2) x-intercepts: t(-3) = t(5) = 0. The graph shows g(x) has two (2) x-intercepts: g(1) = g(5) = 0. Neither function has fewer x-intercepts than the other.
The table shows the y-intercept of t(x) to be t(0) = 3. The graph shows the y-intercept of g(x) to be g(0) = -1. The y-intercepts are not the same, and that of t(x) is greater than that of g(x).
The table shows the maximum value of t(x) to be t(1) = 4. The graph shows the maximum value of g(x) to be g(3) = 2. Thus ...
the maximum value of t(x) is greater than the maximum value of g(x)