1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
14

Peter wants to purchase pizza pies and breadsticks for a party. The cashier tells him that pizza pies are $8 each and breadstick

s are $5 each. Peter cannot spend more than $120. Which of the following options models the number of pizza pies and breadsticks that Peter can purchase? Let y represent the number of pizza pies purchased and let x represent the number of breadsticks purchased.
A.5x + 8y ≤ 120 B.5x + 8y ≥ 120 C.8x + 5y ≤ 120 D.8x + 5y ≥ 120
Mathematics
2 answers:
Dmitry [639]3 years ago
8 0
The answer is A.) 5x+8y≤120

To get this answer the first thing I did was notice what it says the x and y variables stand for. The "x variable represents the number of breadsticks purchased" and "the y variable represents the number of pizza pies purchased". It also says that each breadstick is $5 and each pizza pie is $8. Accordingly, we need to match our variables with what we're buying. So, the y be with 8 and the x be with 5.

So, our expression will have a 5x and an 8y in it.

Now if we notice, it says he can spend no more than $120, so that means he can spend $120 or less. The less than or equal to sign is ≤.

Now we can find our answer. The only answer with 5x and 8y with a ≤120 is answer choice A

Hope this helped!! :))

Citrus2011 [14]3 years ago
7 0

Answer: A. 5x + 8y less than or equal to 120

Step-by-step explanation:

You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
gina invests $1,677 in an account paying 8.61% simple interest annually. how much interest has gina gained after 6 years?
Nana76 [90]
Gina would have gained $866.34 after six years.
5 0
3 years ago
Read 2 more answers
4 - (-18) = 4 - (-18) =
VashaNatasha [74]

Answer: 22

Step-by-step explanation:

4 - (-18) = 4 + (+ 18) = 22

8 0
3 years ago
Please please help.........
Brums [2.3K]

Answer:

I think the working is actually unnecessary because of (x-c)=0 and if x is 5 (5-c)=0 c would be 5

7 0
3 years ago
There are 36 students in mrs.Keaton's sixth grade class. If 5/12 of her students are girls, how many girls are in the class?
olga_2 [115]
There are 15 girls in the class. 
7 0
3 years ago
Read 2 more answers
Other questions:
  • 4 (x+2) as a word phrase
    5·2 answers
  • A factory makes 394 motorcycles each week. If there are 52 weeks in a year, how many motorcycles will they make in a year
    15·1 answer
  • Choose the correct answers for (a) the total installment price, (b) the carrying charges, and (c) the number of months needed to
    5·2 answers
  • Use Inverse Operations to solve.Check Your Answer<br><br> 17 + k = 54
    12·2 answers
  • It is known that 5 3x+2
    15·1 answer
  • De una carrera x km ya se han recorrido y km cuanto falta para terminar?
    7·1 answer
  • ​a) Define your random​ variables, and use them to express the​ farmer's net income. A. Apounds of apples​ sold, ​, B. Aprice pe
    10·1 answer
  • Can someone try doing this plz
    15·2 answers
  • What would this equal too look at the screen shot
    6·1 answer
  • Write 0.0007654 * 10^0 in scientific notation, then state the order of magnitude for it.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!