True true true true true true maybe
In the study of Gigord and colleagues using Elderflower orchids, the allele frequencies of yellow and purple flowers varied such that when the yellow allele started to become rare, the reproductive success of purple flowers decreased and the reproductive success of yellow-flowered individuals increased in a process known as <u>frequency-dependent selection.</u>
<u></u>
Frequency-dependent selection is an evolutionary process in which the fitness of a phenotype or genotype is dependent on the frequency of that phenotype or genotype in a particular population.
- Positive frequency-dependent selection raises the fitness of a phenotype or genotype as it becomes more prevalent.
- In the case of negative frequency-dependent selection, the fitness of an increasingly prevalent phenotype or genotype diminishes.
In a broader sense, frequency-dependent selection involves biological interactions that make the fitness of an individual dependent on the frequencies of other genotypes or phenotypes within the population.
Learn more about the frequency-dependent selection here :
brainly.com/question/14630940
#SPJ4
<u></u>
<u />
A microorganism (or microbe) is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify biologically active entities such as viruses and viroids as microorganisms, but others consider these as non-living.