A biomass pyramid shows the total mass of the organisms that each trophic level occupies in an ecosystem. Usually, producers have a higher biomass than any other trophic level, but there can be lower amounts of biomass at the bottom of the pyramid if the rate of primary production per unit biomass is very fast.
The given statement is True.
<u>Explanation:</u>
The Charles Darwin developed the theory called Darwinism theory of evolution. The theory states that all the species of the organisms arises and developed through the small, inherited variations in the organisms that increase the individual ability to complete the survive and reproduce.
The individual species are not having identical traits that are passed from the generation to generation. The offspring are born that can survive, only the survive of the completion for resources will reproduce; he describes how the species can change in shape and character through the selective breeding.
Answer:
P = f(TLTL) = 0,16
H = f(TLTS) = 0,48
Q = f(TSTS) = 0,36
Explanation:
Hello!
The allele proportion of any locus defines the genetic constitution of a population. Its sum is 1 and its values can vary between 0 (absent allele) and 1 (fixed allele).
The calculation of allelic frequencies of a population is made taking into account that homozygotes have two identical alleles and heterozygotes have two different alleles.
In this case, let's say:
f(TL) = p
f(TS) = q
p + q = 1
Considering the genotypes TLTL, TLTS, TSTS, and the allele frequencies:
TL= 0,4
TS= 0,6
Genotypic frequency is the relative proportion of genotypes in a population for the locus in question, that is, the number of times the genotype appears in a population.
P = f(TLTL)
H = f(TLTS)
Q = f(TSTS)
Also P + H + Q = 1
And using the equation for Hardy-Weinberg equilibrium, the genotypic frequencies of equilibrium are given by the development of the binomial:



So, if the population is in balance:



Replacing the given values of allele frecuencies in each equiation you can calculate the expected frequency of each genotype for the next generation as:



I hope you have a SUPER day!
1 is nucleic acids and 2 is nucleic acids