The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours
Answer:
- 0.83
Step-by-step explanation:
just add the recurring bar on top of the 3 and it should be correct
Answer:
We know that our world is in 3 dimensions i.e. there are three directions and so, three co-ordinates are required.
Now, if we have to find a position of an object lying on a flat surface, this means that there are only two directions and so, two co-ordinates are needed.
So, we can define the domain ( xy-axis ) in such a way that there are two axis - horizontal where right area have positive values & left area has negative values and vertical where upward side have positive values & downward side has negative values.
For e.g. if we want to find the position of a pen on the table. We will make our own xy-axis and see in which quadrant the pen lies.
Let us say that the pen lies at (2,3), this means that the position of pen is in the first quadrant or it is 2 units to the right of y-axis and 3 units up to the x-axis.
This way we can see that two directions are sufficient to find the position of an object placed on a flat surface.
Answer:
C) $281.25
Step-by-step explanation:
3/15 describes you having to pay the bill in 15 days with a 3% discount.
3% = 0.03
289.95 - (298.95 x 0.03)
289.95 - 8.6985
281.25
The compound interest formula is : 
where, A= Future value including the interest,
P= Principle amount, r= rate of interest in decimal form,
t= number of years and n= number of compounding in a year
Here, in this problem P= $ 51,123.21 , t= 20 years and 2 months
So, t= 20 + (2/12) years
t= 20 + 0.17 = 20.17 years
As the amount is compounded daily, so n= (12×30)= 360 [Using the traditional Banker’s rule of 30 days per month]
Thus, 
When the interest rate is given, then we can use this equation for finding the future value.